
Tutorial	on	Configuring	BIND	to	use	Response	Policy	Zones	(RPZ)	
This	guide	is	based	on	a	training	Andrew	Fried	of	Deteque	gave	at	a	M3AAWG	Conference	in	February,	2017.	At	the	time,	the	
current	version	of	BIND	was	9.11.0-P3.		
	
This	tutorial	assumes	some	working	ability	with	Linux,	but	otherwise	all	the	commands	and	steps	are	provided,	including	a	
very	basic	sample	configuration.			The	configuration	files	used	in	this	guide	are	available	for	download	from:	
https://deteque.com/m3aawg-bind-training/	

Contents	
	
A)	The	five	steps	to	setting	up	BIND	to	use	RPZ	are:	
1.	Install	BIND		
2.	Create	a	BIND	Configuration	File	(and	the	importance	of	closing	your	resolver)	
3.	Create	a	Local	RPZ	Server	(Master)	
4.	Configure	a	Slave	RPZ	Zone		
5.	Enable	RPZ	Policy	Zones	(and	the	importance	of	testing	a	new	zone	file)	
	
B)	RPZ	Triggers	and	Actions	explained:	
1.	Triggers	(and	the	importance	of	ordering)	
2.	Actions	
3.	Configuring	Response	Policy	Zones	(and	the	importance	of	a	local	RPZ	Zone)	

What	is	RPZ?	
Developed	by	Paul	Vixie	(ISC)	and	Vernon	Schryver	(Rhyolite).	RPZ	was	first	publicly	announced	at	Black	Hat	in	July,	2010.	
Also	referred	to	as	a	“DNS	firewall”.		
	
RPZ	provides	a	way	to	“rewrite”	a	DNS	response.		Normally		a	rewrite	would	return	an	NXDOMAIN,	or	“no	such	answer”	
response	for	a	query	whose	return	data	matches	an	RPZ	“trigger”.	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 2 of 20	

	
RPZ	rules	can	be	configured	to	rewrite	DNS	queries	based	on:	

• IP	Address/Subnet		(RPZ-IP)	
• Hostname/Domain	(QNAME)	
• Nameserver	Name/Domain	(RPZ-NSDNAME)	
• Nameserver	Address/Subnet	(RPZ-NSIP)	
• Client	IP	(RPZ-CLIENT-IP)	

	
The	RPZ	rule	set	is	carried	in	a	DNS	zone	file.		RPZ	policy	zones	can	be	sent	to	slaves	using	AXFR/IXFR.	TSIG	can	be	used	to	
authenticate	the	zone	transfers.	
	
RPZ	requires	decent	hardware	to	run	on.		There	are	a	lot	of	factors	to	consider	when	specifying	hardware	for	use	as	an	RPZ-
enabled	recursive	DNS	server,	but	a	good	starting	point	would	be:	

• 8	Core	CPU	with	at	least	a	2.4	gHz	clock	speed	
• 8	GB	of	RAM	
• Servers	should	be	bare	metal	-	not	virtualized	

	
1. INSTALL	BIND	

	
The	correct	way	to	deploy	Bind	with	RPZ	is	to	download	the	source,	compile	it,	then	configure	it.		Using	apt-get	or	yum	will	
almost	certainly	install	an	older	back-ported	version	of	the	application.		Not	good.	
	
Assuming	you’re	using	Ubuntu	16.04.1,	you’ll	need	to	apt-get	two	dependencies	that	bind	needs	-		the	compiler	and	the	libssl	
library.		We’ll	use	apt-get:	
apt-get	clean	
apt-get	update	
apt-get	install	build-essential	
apt-get	install	libssl-dev	
ldconfig	
	
	
Let’s	begin	by	creating	a	couple	of	directories	that	bind	will	use	for	its	files:	
mkdir	/etc/namedb	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 3 of 20	

mkdir	/etc/namedb/bind	
	
Next,	we	need	to	download	Bind.		It’s	available	from	Internet	System	Consortium’s	(ISC)	website.		Go	to	their	website	at:	
	https://www.isc.org	
	
Download	the	most	current	version.		For	example,		download:	
bind-9.11.2.tar.gz						
	
One	you	download	it,	move	it	to		
				/etc/namedb/bind/	
Now	go	to	/etc/namedb/bind	and	untar	the	source	file	archive:	
tar	zxvf	bind-9.11.2.tar.gz	
	
You	will	see	a	new	directory	created	called	“bind-9.11.2”	
Go	into	that	directory:	
cd	bind-9.11.2	
Now	we	need	to	compile	the	program.		This	is	a	three-stage	process:	

• configure	
• make	
• make	install	

	
To	make	this	a	lot	easier,	please	download	config	files	from:	
https://deteque.com/m3aawg-bind-training/	
Here’s	the	files	we’ll	need:	

• CONFIGURE-BIND.sh	
• db.rpz.local	
• named.conf	
• root.cache	

	
Lets	create	a	script	to	do	the	configuration:	
#!/bin/sh	
./configure	\	
	 --enable-threads	\	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 4 of 20	

	 --with-randomdev=/dev/urandom	\	
	 --prefix=/usr	\	
	 --sysconfdir=/etc	\	
	 --datadir=/etc/namedb	\	
	 --with-openssl=yes	\	
	 --with-tuning=large	\	
	 --enable-largefile	\	
	 --with-aes	\	 	
		—with-libjson=no	
	
This	file	should	have	been	downloaded	-	it’s	called:	
CONFIGURE-BIND.sh	
Download	it	and	be	sure	to	make	it	executable:	
chmod	700	CONFIGURE-BIND.sh	
	
	
Now	lets	configure	the	source:	
Be	sure	you’re	in	the	bind-9.11.2	directory,	then	lets	execute	that	configure	script	you	just	created:	
	
/etc/namedb/CONFIGURE-BIND.sh	
You’ll	see	a	lot	of	text	fly	by.		What	you	need	to	pay	attention	to	is	at	the	end	of	the	compilation	bind	will	complain	about	any	
missing	libraries	that	you	need.			
	
	
Next,	we’re	going	to	compile	bind	by	typing:	
make	
	
Finally,	we’re	going	install	the	program	on	our	system:	
make	install	
	
We	need	to	install	the	latest	root.cache	file	into	the	/etc/namedb.		Lets	run	this	command	to	do	that:	
/usr/bin/wget	--user=ftp	--password=ftp	\	
ftp://ftp.rs.internic.net/domain/db.cache	\		

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 5 of 20	

-O	/etc/namedb/root.cache	
	
The	file	should	have	been	downloaded	as:	update-root-cache.sh	
	
We’re	going	to	need	an	rndc	key	later	on,		so	let’s	create	it	now:	
rndc-confgen	>	/etc/rndc.conf	
chmod	600	/etc/rndc.conf	
	
That	file	contains	a	key	we’ll	need	to	add	to	the	main	configuration	file.	
You	can	also	run	the	script	“create-rndc-key.sh”	to	create	the	rndc	key.	
	

2. CREATE	A	BIND	CONFIGURATION	FILE	
	
Now	comes	the	fun	part	-	creating	BIND’s	configuration	file.	For	this	exercise	we’re	going	to	create	a	bare	bones	file.		This	file	
will	need	to	go	at	/etc/named.conf,	but	once	we’re	done	we’ll	make	a	copy	of	it	and	store	it	under	/etc/namedb	just	in	case….	
Please	download	the	file:	https://deteque.com/m3aawg-bind-training/named.conf"	
then	copy	that	file	to	/etc	
	
2-Minute	Intro	to	T.SIG	
We	won’t	need	this,	but	just	in	case	you	find	the	need	to	generate	TSIG	keys,	here’s	how	you	do	it:	
dnssec-keygen	-a	hmac-sha256	-b	256	-n	HOST	[keypair	name]	
	
You’ll	replace	the	[keypair	name]	with	the	name	of	the	key,	
dnssec-keygen	-a	hmac-sha256	-b	256	-n	HOST	testkey	
	
That	will	create	two	files	that	look	something	like:	
Ktestkey.+163+16005.key	
Ktestkey.+163+16005.private	
In	the	private	file,	you’ll	seen	an	entry	that	begins	with	“key:”.		That’s	the	tsig	key.	
	
Private-key-format:	v1.3	
Algorithm:	163	(HMAC_SHA256)	
Key:	2bRaxnyRwv2shCUJpnJWuW6EfrLackhGR+5PGjTSGlM=	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 6 of 20	

Bits:	AAA=	
Created:	20170212211321	
Publish:	20170212211321	
Activate:	20170212211321	
	
In	your	config,	you’d	add:	
key	testkey	{	
	 algorithm	hmac-sha256;	
	 secret	“2bRaxnyRwv2shCUJpnJWuW6EfrLackhGR+5PGjTSGlM=	“;	
};	
	
	
When	using	a	TSIG	key,	you	need	to	specify	the	key	and	the	server	
that	key	works	with.		Lets	make	pretend	you’ll	be	pulling	zones	from		
a	nameserver	at	123.45.67.88	and	TSIG	authentication	is	required:	
	
key	testkey	{	
	 algorithm	hmac-sha256;	
	 secret	“2bRaxnyRwv2shCUJpnJWuW6EfrLackhGR+5PGjTSGlM=	“;	
};	
server	123.45.67.88	{	
					keys	{	testkey;	};	
};	
	
	
The	next	section	we	need	to	configure	is	logging:	
	
Since	we’re	running	RPZ,	we	definitely	want	to	log	any	RPZ	rewrites.	To	do	that,	we	need	to	set	up	two	things	under	the	
“logging”	header.	
								channel	rpzlog	{	
																file	"rpz.log"	versions	unlimited	size	1000m;	
																print-time	yes;	
																print-category	yes;	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 7 of 20	

																print-severity	yes;	
																severity	info;	
								};	
								category	rpz	{	rpzlog;	};	
	
Some	miscellaneous	stuff:	
controls	{	
	 inet	127.0.0.1	port	953	
	 allow	{	127.0.0.1;	}	keys	{	rndc-key;	};	
};	
server	fe80::/16	{	bogus	yes;	};	
trusted-keys	{	
};	
	
	

3. CREATE	A	LOCAL	RPZ	SERVER	
	
$TTL	300	
@															IN	SOA		localhost.	need.to.know.only.	(
																							201702121	;	Serial	number	
																							60								;	Refresh	every	minute	
																							60								;	Retry	every	minute	
																							432000				;	Expire	in	5	days	
																							60)						;	negative	caching	ttl	1	minute	
																IN	NS			LOCALHOST.	
deteque.com																					IN	CNAME	rpz-passthru.	
*.deteque.com																			IN	CNAME	rpz-passthru.	
spamhaus.org																				IN	CNAME	rpz-passthru.	
*.spamhaus.org																		IN	CNAME	rpz-passthru.	
32.25.195.194.32.rpz-ip									IN	CNAME	rpz-passthru.										;	whitelist	34.194.195.25/32	
32.71.219.156.35.rpz-ip									IN	CNAME	rpz-passthru.										;	whitelist	35.156.219.71/32	
example.com																					IN	CNAME	.																						;	local	block	against	example.com	
*.example.com																			IN	CNAME	.																						;	local	block	against	example.com	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 8 of 20	

	
	
A	sample	rpz.local	file	is	on	the	download	server	at	https://deteque.com/m3aawg-bind-training/	
	
	

4. CONFIGURE	A	SLAVE	RPZ	ZONE	
zone	"drop.rpz.spamhaus.org"	{	
	 type	slave;	
	 file	"dbx.drop.rpz.spamhaus.org";	
	 masters	{		
	 	 34.194.195.25;	
	 	 35.156.219.71;	
	 };	
	 allow-transfer	{	none;	};	
	 allow-query	{	localhost;	};	
};	
	
Note	that	your	RPZ	zones	should	only	allow	queries	from	localhost!	
	
	

5. ENABLE	RPZ	POLICY	ZONES	
options	{	
	 directory	"/etc/namedb";	
	 key-directory	"/etc/namedb";	
	 pid-file	"/var/run/named.pid";	
	 recursing-file	"named.recursing";	
	 statistics-file	"rndc.stats";	
	 recursion	yes;	
	 allow-transfer{	none;	};	
	 ixfr-from-differences	yes;	
	 empty-zones-enable	yes;	
	 allow-recursion		{	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 9 of 20	

	 	 ::1;	
	 	 127.0.0.0/8;	
	 	 MY-COMPANY;	
	 };	
	 allow-query-cache	{	
	 	 ::1;	
	 	 127.0.0.0/8;	
	 	 MY-COMPANY;	
	 };	
	 response-policy	{	
	 	 zone	"rpz.local";	
	
	 	 zone	"drop.rpz.spamhaus.org";	
	
At	this	point,	BIND	is	ready	to	consume	RPZ	files	for	use	in	creating	a	‘DNS	firewall’.	
	
EXAMPLE	OF	POLICY	OVERRIDE	FOR	TESTING	ZONES	
	
When	first	implementing	a	new	rpz	policy,	you	might	want	to	use	a	pass-through		rule	for	a	testing	period	of	several	days.	This	
will	not	change	the	behavior	of	the	BIND	server,	it	will	continue	to	permit	queries	to	complete,	while	logging	whether	there	
were	any	queries	that	triggered	this	RPZ	rule.	
	
response-policy	{	
	 	 zone	"rpz.local";	
	 	 zone	"drop.rpz.spamhaus.org	POLICY	RPZ-PASSTHRU“;	
	 };	
	
	
TESTING	
In	order	to	take	advantage	of	RPZ,	you	need	data	to	put	into	the	RPZ	zones.		There	are	commercial	RPZ	zone	feeds	available	
from	a	number	of	vendors.			You	should	always	evaluate	a	potential	new	zone	for	at	least	10	days	before	“turning	it	on”	to	be	
absolutely	certain	that		it	won’t	be	a	cause	of	false	positives	or	conflict	with	any	special	needs	your	site	has.	Have	a	plan	for	
dealing	with	exigent	issues.		This	is	one	of	the	main	reasons	you	should	have	a	local	RPZ	zone	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 10 of 20	

	
	
A	word	or	two	about	security	
The	day	of	running	open	recursive	name	servers	is	long	gone	for	most	of	us.		Failing	to	configure	a	name	server	to	reject	
outside	queries	basically	makes	your	name	server	an	instrument	for	denial	of	service	attacks.	Always	restrict	who	can	query	
your	recursive	servers	using	either	ACLs	or	hard	firewall	rules	vial	IPTABLES.	
	
DO	NOT	PUT	AN	INSECURE	DNS	SERVER		ON	THE	INTERNET.		Lock	them	down!	
	
A	second	point	about	security	-	if	you’re	using	commercial	RPZ	zones,	failing	to	secure	your	server	could	be	viewed	as	a	
violation	of	terms	of	service.			You	should	restrict	who	can	query	the	recursive	nameserver	and,	additionally,	make	sure	no	one	
can	download	the	zones	from	your	server.	Internal	distribution	of	RPZ	data	should	be	done	using	both	ACLs	(addresses	of	the	
authorized	servers)	plus	TSIG	authentication.			
	

RPZ	Triggers	and	Rules	(Actions)	
	
RPZ	rules	can	be	configured	to	rewrite	DNS	queries	based	on:	

• IP	Address/Subnet		(RPZ-IP)	
• Hostname/Domain	(QNAME)	
• Nameserver	Name/Domain	(RPZ-NSDNAME)	
• Nameserver	Address/Subnet	(RPZ-NSIP)	
• Client	IP	(RPZ-CLIENT-IP)	

	
Creating	a	trigger	rule	for	a	Domain	
Let’s	say	we	want	to	rewrite	any	DNS	queries	for	a	domain,	but	allow	queries	for	hosts	in	that	domain:	
example.com					IN	CNAME	.	
	
This	would	result	in	an	NXDOMAIN	response	for	a	query	for	“example.com"	but	would	allow	a	query	for	a	hostname	in	the	
domain,	i.e.	“host.example.com"	
Note:	do	not	add	a	period	after	the	“owner”	name!	
	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 11 of 20	

Creating	a	trigger	rule	for	a	Hostname	
Let’s	say	we	want	to	rewrite	any	DNS	queries	for	a	specific	hostname,	but	allow	lookups	to	the	domain	and	other	hosts	in	that	
domain:	
host.example.com					IN	CNAME	.	
	
This	would	result	in	an	NXDOMAIN	response	for	a	query	for	“host.example.com”	but	would	allow	a	query	for	the	domain	as	
well	as	other	hosts	in	the	domain.	
Note:	do	not	add	a	period	after	the	hostname!	
	
	
Creating	a	trigger	rule	for	everything	in	a	Domain	
Let’s	say	we	want	to	rewrite	any	DNS	queries	for	a	given	domain,	as	well	as	for	all	of	the	hosts	in	that	domain:	
example.com													IN	CNAME	.	
*.example.com											IN	CNAME	.	
	
This	would	result	in	an	NXDOMAIN	response	for	any	query	related	to	example.com.		This	is	typically	the	most	often	used	
format	for	RPZ.	
Note:	do	not	add	a	period	after	the	hostname!	
	
Creating	a	trigger	rule	for	an	IP	or	Subnet	(v4)	
Let’s	say	we	want	to	rewrite	any	DNS	queries	for	any	hosts	that	resolve	in	the	172.16.3.0/24	subnet.	
24.0.3.16.172.ns-ip			IN	CNAME	.	 	
	
As	you	can	see,	the	octets	in	the	subnet	need	to	be	reversed	(similar	to	the	way	rbl	in-addr.arpa	works).		The		first	number	
represents	the	subnet	mask.		If	we	only	wanted	to	block	a	single	ip,	the	first	number	would	be	32,	which	represents	a	/32,	i.e.:	
32.1.3.16.172.ns-ip		IN	CNAME	.	
	
	
Creating	a	trigger	rule	for	an	IP	or	Subnet	(v6)	
Let’s	say	we	want	to	rewrite	any	DNS	queries	for	any		hosts	that	resolve	to	an	IPv6	subnet	like	2345:68::a/64.	To	do	this	we	
must	normalize	the	v6	address	to:	
2345:68:0:0:0:0:0:a	
	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 12 of 20	

Just	like	the	v4,	the	subnet	mask	becomes	the	first	entry,	followed	by	the	octets	of	the	v6	address	is	reverse	order:	
64.a.zz.68.2345.ns-ip															IN	CNAME	.	
64.a.0.0.0.0.0.68.2345.ns-ip					IN	CNAME	.	
	
The	“zz”	is	a	shorthand	equivalent	for	“::”	
	
Creating	a	trigger	rule	for	a	Nameserver	
Let’s	say	we	want	to	rewrite	any	DNS	queries	for	all	hosts	and	domains	whose	authoritative	name	server	is	
ns1.badnameser.com:	
ns1.badnameserver.com.rpz-nsdname		IN	CNAME	.	
	
	
Creating	a	trigger	rule	for	a	Nameserver	IP	
Let’s	say	we	want	to	rewrite	any	DNS	queries	for	all	lookups	where	the	authoritative	name	server	resides	on	192.168.55.68	
(/32	implied)	
32.68.55.168.192.rpz-nsip					IN	CNAME	.	
	
A	special	use	for	the	Client	IP	
Let’s	our	company	has	cutting	edge	security	and	has	RPZ	enabled	recursive	nameservers	used	throughout	the	organization.		
Your	incident	response	folks,	whose	subnet	is	192.168.20.0/23	needs	unrestricted	access	to	the	Internet.		The	Client	IP	trigger	
can	be	used	to	allow	their	queries	to	bypass	the	rest	of	the	RPZ	checks	as	long	as	this	rule	set	(i.e.	rpz.local)	appears	BEFORE	
subsequent	rule	sets	that	would	otherwise	rewrite	responses	23.0.20.168.192.rpz-client-ip		IN	rpz-passthru.	
	
	
A	note	about	“ordering”	
There	is	no	special	ordering	for	rules	within	a	given	rule	set.	However,	there	is	an	ordering	based	on	rule	sets	themselves.	
This	is	why	you	should	always	list	the	most	egregious	rule	sets	at	the	“top	of	the	list”	in	the	response-policy	section	of	the	Bind	
configuration.	If	you	create	a	local	rule	set,	it	should	be	the	first	rule	set	that	appears	in	the	response-policy	section!	
	
	
RPZ	Actions	
Now	that	we	covered	the	RPZ	triggers	it’s	time	to	look	at	RPZ	actions.		The	triggers	are	used	to	identify	objects	that	require	
RPZ	intervention.		The	actions	are	the	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 13 of 20	

“right	hand”	portion	of	the	RPZ	rules	that	determine		what	type	of	action/rewrite	the	resolver	should	make.	We’ve	already	
worked	with	the	first,	which	is	“CNAME	.”	
“CNAME	.”	synthesizes	an	NXDOMAIN	response	for	a	domain/hostname	
	
	
RPZ	Actions	
The	currently	supported	RPZ	policies	are:	

• GIVEN	
• DISABLED	
• PASSTHRU	
• DROP	
• TCP-ONLY	
• NODATA	
• NXDOMAIN	

	
RPZ	Actions	-	GIVEN	
This	is	only	useful	when	used	within	the	configuration	file	and	basically	tells	Bind	to	let	the	RPZ	determine	its	own	
actions.		This	is	the	default.	
	
RPZ	Actions	-	DISABLED	
The	testing	override	DISABLED	policy	causes	policy	zone	records	to	do	nothing	but	log	what	they	would	have	done		if	the	
policy	zone	were	not	disabled.	The	response	to	the		DNS	query	will	be	written	(or	not)	according	to	any	triggered		policy	
records	that	are	not	disabled.	Disabled	policy		zones	should	appear	first,	because	they	will	often	not	be	logged	if	a	higher	
precedence	trigger	is	found	first.	This	is	used	in	the	response-policy	section	of	the	bind	configuration	file.		
	
	
RPZ	Actions	-	PASSTHRU	
Specifically	allows	the	query	to	resolve	correctly	but	will	produce	logs	of	the	query	in	the	rpz.log	file.	
This	is	most	often	used	to	punch	holes	in	existing	subnets	or	test	new	zones	by	logging	potential	rewrites	without	actually	
performing	the	rewrites.	This	is	normally	used	in	the	local	RPZ	zone	or	as	an	override	action	within	the	response-policy		
section	of	the	configuration	file	
	
RPZ	Actions	-	DROP	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 14 of 20	

This	policy	will	simply	discard	the	query	and	will	not	return	any	response	to	the	client.		This	is	normally	used	to	block	a	client:	
	
16.0.0.16.192.rpz-client-ip			IN	CNAME	rpz-drop.	
	
	
RPZ	Actions	-	TCP-ONLY	
This	policy	forces	the	resolver	to	use	TCP	for	the	query.	
	
;	force	some	DNS	clients	and	responses	in	the	example.com		
;	zone	to	TCP	
16.0.0.1.10.rpz-client-ip			CNAME			rpz-tcp-only.	
example.com																			CNAME			rpz-tcp-only.	
*.example.com																	CNAME			rpz-tcp-only.	
	
	
RPZ	Actions	-	NODATA	
Returns	an	empty	response	for	the	matching	trigger	but	will	return	nxdomain	responses	for	subdomains.	
The	format	for	the	these	records	is	a	little	different:	
	
example.com					CNAME	*.	
*.example.com			CNAME	*.	
	
	
RPZ	Actions	-	NXDOMAIN	
By	far	the	most	common	policy	used	in	RPZ.		The		rule	uses	the	“CNAME	.”	as	the	policy,	i.e.:	
baddomain.com			IN	CNAME	.	
*.baddomain.com	IN	CNAME	.	
	
	
Configuring	Response	Policy	Zones	
RPZ	zones	are	specified	in	the	response-policy	section:	
	 response-policy	{	
	 	 zone	"rpz-local";	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 15 of 20	

	 	 zone	"tor-exit-nodes.local";	
	 	 zone	"bogon.rpz.spamhaus.org";	
	 	 zone	"botnetcc.rpz.spamhaus.org";	
	 	 zone	"malware.rpz.spamhaus.org";	
	 	 zone	"malware-adware.rpz.spamhaus.org";	
	 	 zone	"malware-aggressive.rpz.spamhaus.org";	
	 	 zone	"bad-nameservers.rpz.spamhaus.org";	
	 	 zone	"drop.rpz.spamhaus.org";	
	 	 zone	"abused-legit.rpz.spamhaus.org";	
	 	 zone	"dbl.rpz.spamhaus.org";	
	 	 zone	"malware.rpz.oitc.com";	
	 	 zone	"phish.rpz.oitc.com";	
	 	 zone	"misc.rpz.oitc.com";	
	 	 zone	"rpz.surbl.org";	
	 };	
	
	
Configuring	Response	Policy	Zones	
Benefits	of	using	separate	zone	files:	

• Allows	prioritization	of	the	zones	-	the	most	egregious	at	the	top	
• Results	in	much	more	meaningful	logging	
• Allows	zones	with	varying	TTLs	to	replicate	more	efficiently	
• Less	“breakage”	from	Bind	journal	file	issues	
• Bind	currently	has	a	32	zone	limit	
• Best	Common	Practice	is	to	ALWAYS	create	a	local	RPZ	zone	

	
Your	local	RPZ	zone	should	whitelist	your	domain(s)	and	addresses	you	control	and	should	be	placed	at	the	top	of	the	list	in	
the	response-policy	section.		This	zone	can	also	be	used	to	whitelist	items	that	may	appear	in	other	zones	-	which	gives	you	a	
way	of	mitigating	false	positives	or	modifying	your	policy	to	allow	PASSTHRU	queries	for	your	clients.	
	
	
A	sample	template	for	a	standard	DNS	zone	file:	
$TTL	300	

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 16 of 20	

@														IN	SOA		n1.my.domain.	dnsadmin.my.domain.	(
																							1486847439	;	Serial	number	
									60																	;	Refresh	every	1	minutes	
																							60																		;	Retry	every	minute	
																							432000										;	Expire	in	5	days	
																							60)																;	negative	caching	ttl	1	minute	
																	IN	NS			LOCALHOST.	
;	RPZ	Data	goes	below	
	
	
RPZ.local	example:	
$TTL	300	
@														IN	SOA		localhost.	need.to.know.only.	(
																							1486847439	;	Serial	number	
									60																	;	Refresh	every	1	minutes	
																							60																		;	Retry	every	minute	
																							432000										;	Expire	in	5	days	
																							60)																;	negative	caching	ttl	1	minute	
																		IN	NS			LOCALHOST.	
deteque.com													IN	CNAME	rpz-passthru.	
*.deteque.com										IN	CNAME	rpz-passthru	
onion.link																		IN	CNAME	.	 	 	 ;	High	risk	tor	gateways	
*.onion.link																IN	CNAME	.	 	 	 ;	High	risk	tor	gateways	
	
	
	

Example	named.conf	file		
(available	for	download	from	https://deteque.com/m3aawg-bind-training/)	
	
	
acl MY-COMPANY {
 199.168.90.180;

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 17 of 20	

};

logging {
 channel null {
 null;
 };

 channel bindlog {
 file "bind.log";
 print-time yes;
 print-category yes;
 print-severity yes;
 severity info;
 };

 channel rpzlog {
 file "rpz.log" versions unlimited size 1000m;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity info;
 };

 category default { bindlog; };
 category general { bindlog; };
 category database { null; };
 category config { bindlog; };
 category resolver { null; };
 category xfer-in { bindlog; };
 category xfer-out { bindlog; };
 category notify { bindlog; };
 category client { null; };
 category unmatched { null; };
 category network { bindlog; };
 category update { bindlog; };

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 18 of 20	

 category update-security { bindlog; };
 category queries { null; };
 category dispatch { null; };
 category lame-servers { null; };
 category delegation-only { bindlog; };
 category edns-disabled { null; };
 category rpz { rpzlog; };
};

key rndc-key {
 algorithm hmac-md5;
 secret "rEbX202KhpwchN2OAsEn/A==";
};

key testkey. {
 algorithm hmac-sha256;
 secret "gDy28KboVkKvx7S/F05QQKgsRMjPN51a6oVQPt3AuJI=";
};

server 1.2.3.4 {
 keys { testkey.; };
};

controls {
 inet 127.0.0.1 port 953
 allow { 127.0.0.1; } keys { rndc-key; };
};

options {
 directory "/etc/namedb";
 key-directory "/etc/namedb";
 pid-file "/var/run/named.pid";
 recursing-file "named.recursing";
 statistics-file "rndc.stats";
 recursion yes;

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 19 of 20	

 allow-transfer{ none; };
 ixfr-from-differences yes;
 empty-zones-enable yes;
 allow-recursion {
 ::1;
 127.0.0.0/8;
 MY-COMPANY;
 };
 allow-query-cache {
 ::1;
 127.0.0.0/8;
 MY-COMPANY;
 };
 response-policy {
 zone "rpz.local";
 zone "drop.rpz.spamhaus.org";
 };
};

#--
Spamhaus RPZ Files
#--

zone "rpz.local" {
 type master;
 file "db.rpz.local";
 allow-update { none; };
 allow-transfer { none; };
 allow-query { localhost; };
};

#--
Spamhaus RPZ Files
#--

Configuring	BIND	for	Response	Policy	Zones	

Provided	by	ISC	and	The	Spamhaus	Project	
Based	on	a	presentation	by	Andrew	Fried	of	Deteque	at	M3AAWG,	February,	2017											Page 20 of 20	

zone "drop.rpz.spamhaus.org" {
 type slave;
 file "dbx.drop.rpz.spamhaus.org";
 masters {
 34.194.195.25;
 35.156.219.71;
 };
 allow-transfer { none; };
 allow-query { localhost; };
};

#--
Root hints
#--

zone "." {
 type hint;
 file "root.cache";
};

