
Ghost Domain Names: Revoked Yet Still Resolvable

Jian Jiang, Jinjin Liang

Network Research Center

Tsinghua University

{jiang-j08, liangjj09}@mails.tsinghua.edu.cn

Kang Li

Department of Computer Science

University of Georgia

kangli@cs.uga.edu

Jun Li

University of Oregon

Carlos III University of Madrid

Institute IMDEA Networks

lijun@cs.uoregon.edu

Haixin Duan∗

Network Research Center

Tsinghua University

duanhx@tsinghua.edu.cn

Jianping Wu

Network Research Center

Tsinghua University

jianping@cernet.edu.cn

Abstract

Attackers often use domain names for various malicious

purposes such as phishing, botnet command and control,

and malware propagation. An obvious strategy for prevent-

ing these activities is deleting the malicious domain from

the upper level DNS servers. In this paper, we show that

this is insufficient. We demonstrate a vulnerability affecting

the large majority of popular DNS implementations which

allows a malicious domain name to stay resolvable long af-

ter it has been removed from the upper level servers. Our

experiments with 19,045 open DNS servers show that even

one week after a domain name has been revoked and its TTL

expired, more than 70% of the servers will still resolve it.

Finally, we discuss several strategies to prevent this attack.

1. Introduction

The Domain Name System (DNS), which provides a

global mapping service between Internet domain names and

IP addresses, is one of the most important components of

the Internet. While primarily used for legitimate purposes,

domain names have also been heavily leveraged by mali-

cious activities such as phishing, malware propagation, and

botnet command and control. A major endeavour in stop-

ping these malicious activities has thus been identifying and

deleting malicious domain names. For example, recent do-

main name takedown efforts have successfully shut down

large scale botnets such as Waledac and Rustock [7].

While these successes have demonstrated that domain

name revocation is effective in fighting against malicious

∗Corresponding author

activities, in this paper we show that removing malicious

domains from domain registry is not enough to revoke the

domain and IP mapping at the global scale. In fact, an at-

tacker can keep their domain names continuously resolvable

to attacker-controlled IP addresses—even after the original

delegation data has been removed from the domain reg-

istry and the original time-to-live (TTL) period has expired.

Because of the elusive nature of these domain names (i.e.

revoked but still resolvable), we call them ghost domain

names.

Ghost domain names are results of a vulnerability in the

DNS cache update policy which prevents effective domain

name revocation. The normal process of revoking a domain

name from the global DNS system includes two steps: first

the removal of the delegation data at the domain registry,

and second the removal of all the cached copies through-

out DNS resolvers. The first step is based on an explicit

action, and the second one is implicitly governed by the

TTL value associated with the delegation data. Although

the TTL-based implicit revocation mechanism is not timely,

it is still acceptable if a revoked domain name can be even-

tually cleared from every DNS resolver after the specified

time according to the TTL value. Unfortunately, DNS al-

lows a cached entry to be overwritten at a DNS resolver and

the cache update logic is not strictly defined. An attacker

can manipulate the cached delegation data and extend the

TTL value. The attacker only needs to generate a recursive

query to be resolved by the authoritative server (controlled

by the attacker) before the TTL expires, and piggyback new

delegation data in the crafted response from the authorita-

tive server to the resolver (the victim). The new delegation

data still resolves to an IP address controlled by the attacker

but with new TTL value, and the attacker can continuously

keep the delegation data alive in the resolver by repeating



the same attack.

This vulnerability is different from the notorious cache

poisoning attacks [4]. While cache poisoning attacks com-

promise the integrity of DNS data by forging DNS re-

sponses, to exploit the ghost domain vulnerability, the at-

tacker only needs to perform two legitimate actions: 1)

querying the victim DNS resolver for a ghost domain to

force the victim resolver to query the attacker’s authoritative

server before the delegation data expires, and 2) piggyback-

ing new delegation data in the response from the authorita-

tive server to the victim resolver. Because the two actions

are seemingly legitimate, the vulnerability has not been ad-

dressed by the previous patches for cache poisoning.

Our study confirms that, until the writing of this pa-

per, the majority of public DNS servers and up-to-date ver-

sions of popular DNS implementations, including the lead-

ing vendor BIND, are vulnerable. We believe that this vul-

nerability has not been suitably acknowledged by the net-

working and security community. Through experiments

with 19,045 open DNS resolvers, we demonstrate that over

93% of experimental DNS resolvers are vulnerable and a

large scale exploitation is practical. we have successfully

created and kept ghost domain names in over 70% of exper-

imental resolvers after one week of domain name revocation

and TTL expiration.

This paper also discusses various approaches to address-

ing the problem of ghost domain names. Our study finds

three DNS implementations, namely Unbound, MaraDNS

and Microsoft DNS, have non-vulnerable versions. By

comparing them, we find that although Unbound’s strategy

is simple in terms of implementation, MaraDNS’s strategy

is more fundamental — tightening the policy for delega-

tion data update. We recommend that the DNS community

adopt this defense strategy, and moreover consider a rigor-

ous definition of DNS cache update policy.

The rest of this paper is organized as follows. We re-

view necessary background of DNS in section 2. We then

describe technical details of the vulnerability in section 3.

In section 4 we present our exploitation experiments and

analyze experimental results. We then discuss defenses and

possible issues in section 5. Finally, we highlight the related

work in section 6, and conclude the paper in section 7.

2. Background

In this section, we briefly summarize how DNS works.

We focus on the concepts and details related to the vulnera-

bility that we will present in the next section. Please refer to

the DNS specifications for detailed descriptions [20] [21].

Figure 1. An example of DNS resolution pro­

cess.

2.1. DNS Overview

DNS is organized around a hierarchical tree structure.

Each domain name is composed of labels separated by dots.

The domain name tree is divided into a series of zones based

on the individual labels. Each zone represents a domain,

and the server which holds the DNS data for all names under

it is called the zone’s authoritative server. An authoritative

server may also delegate the authority of its sub-domains

to other servers, which then serve as authoritative servers

respectively for the sub-domains.

To a DNS client (stub resolver), a typical DNS name

resolution process involves the client’s local recursive re-

solver going through a series of queries to the authorita-

tive servers of sub-domains along the tree of DNS. For

example, Figure 1 shows a DNS resolution process of

www.example.com through the three corresponding au-

thoritative servers for the root zone, its child .com, and

the next level sub-domain example.com respectively.

Briefly, a stub resolver first requests a recursive resolver to

resolve the domain www.example.com. Assuming the

recursive resolver has no previous information about the

domain, it will contact external servers in an iterative way.

This iterative process includes a query to a root server (step

2) which redirects the recursive resolver to the .com au-

thoritative server (step 3). Then the recursive resolver con-

tacts the .com server (step 4), and from the reply it gets the

information of authoritative server of example.com (step

5). The recursive resolver queries the authoritative server of

example.com (step 6) which responds the IP addresses

(step 7). The recursive resolver at the end forwards the re-

sponse back to the stub resolver (step 8). During the pro-

cess, the recursive resolver also caches received DNS data

for further resolutions.



2.2. DNS Data Structure

Since the vulnerability we will present involves carefully

crafted DNS responses, we also provide a brief summary

about the DNS resource record and the DNS response for-

mat as background.

DNS data is stored using a basic data structure called

Resource Record (RR). Every RR record is a five-tuple

< name, class, type, TTL, data >, where <
name, class, type > serves as the key of data, TTL is

a time-to-live value in seconds that limits the lifespan of

cached copies. There are many types of RR records. Specif-

ically, an A record gives the IP address of the name, and an

NS record is another name that indicates the name of the

server which has been delegated to serve as the domain’s au-

thoritative server. An NS record together with a correspond-

ing A record are also known as delegation data. Delegation

data points to the authoritative server of a sub-domain and

provides its IP address as well.

When a DNS server receives a query that requests one or

more types of RR records of a given name, it replies with

a response that consists of three sections1: answer section,

authority section and additional section. When the current

DNS server cannot directly resolve the name in question,

the authority section and the additional section, also known

as referral sections, are used to carry an NS record and a cor-

responding A record. These records provide delegation data

of a sub-domain that is closer to the name in question. The

message below is a sample response of Step 5 in Figure 1.

;; ANSWER SECTION

;; AUTHORITY SECTION

example.com. 86400 IN NS ns.example.com.

;; ADDITIONAL SECTION

ns.example.com. 86400 IN A 10.0.0.1

After a DNS resolver receives a DNS response, it then can

cache the resource records contained in the response. Be-

fore the resource records expire based on the associated

TTL value, the resolver does not need to go through the

steps illustrated in Figure 1 to obtain the same records. For

the sample response above, for example, the resolver can

cache the delegation data of example.com for 86,400

seconds.

2.3. DNS Cache Update Policy

DNS cache is critical to its scalability and performance,

and it can significantly reduce the overhead of authoritative

servers and the response latency. However, it also poses

many security threats. In the infamous DNS cache poison-

ing attack [4], an attacker can inject bogus RR records into

1ADNS response also contains a question section copied from the orig-

inal request, which we ignored for simplicity.

DNS resolvers to redirect users to malicious addresses. For

a number of reasons, DNS is inherently vulnerable to this

type of attacks. For example, the connectionless nature of

DNS protocol makes it vulnerable to spoofing attacks. An

attacker can also use a compromised or malicious authori-

tative server to piggyback bogus records in referral sections

of a DNS response.

The research and DNS communities have adopted sev-

eral techniques to harden DNS against cache poisoning at-

tacks. These techniques can be categorized into two classes:

techniques for increasing forgery resistance and techniques

for tightening cache update policy. Here we focus on the

second class of techniques, specifically, the bailiwick rule

[31] and the credibility rule [13]. The bailiwick rule checks

referral sections in a DNS response to see if its contained

RR records are in the authority range of the asked authori-

tative server. For example, if a DNS response comes from

authoritative server of .com and contains a NS record of

.net, then this record is considered as “out-of-bailiwick”

and should be discarded. The credibility rule gives each

RR record a different trust level according to where the re-

sponse comes from and in which section the record is con-

tained. Only when a new RR record has a higher or equal

trust level should a cached RR record be overwritten.

Unfortunately, both the bailiwick rule and the credibil-

ity rule have limitations. The bailiwick rule does not have

a standard specification and depends on implementation.

While the credibility rule specifies when cached entries can

be overwritten, it still could be exploited for malicious pur-

poses. For example, Dan Kaminsky reported a novel cache

poisoning attack [18] that leverages non-existent names to

increase spoofing efficiency, and in particular, exploits the

credibility rule to overwrite cached entries by piggybacked

referral sections. Some DNS vendors have responded to

this attack by enhancing the validation of any RR records

included in the additional section. However, in the next

section, we demonstrate that even with such validation, the

DNS cache update policy is still insecure.

3. The DNS Name Revocation Vulnerability

We illustrate the DNS name revocation vulnerability in

this section, focusing on how an attacker can generate and

maintain a ghost domain name.

To completely revoke a domain name (e.g.,

phishing.com), the delegation data for the name

must be deleted from the authoritative servers of the

parent zone of the name (e.g., .com), and sufficient time

must be allowed for every recursive resolver to remove

the cached delegation data for the name when the data

expires. However, the current bailiwick and credibility

rules that govern the overwriting of cached DNS resource

records do not prevent an attacker from illegally renewing



(a) Before phishing.com is deleted, the attacker pulls the delegation

data for phishing.com into the victim DNS resolver.

(b) After phishing.com is deleted, the attacker manipulates the victim

resolver to keep the delegation data in its cache.

Figure 2. An example ghost domain name (phishing.com) attack.

cached delegation data, even after the data has been deleted

from the parent zone. An attacker can extend the TTL

(time-to-live) value of the cached delegation data, therefore

keeping a malicious domain (such as phishing.com)

continuously resolvable.

Figure 2 shows a typical ghost domain name sce-

nario, where an attacker manages to keep the delega-

tion data of phishing.com in a victim recursive re-

solver. We assume that the attacker has registered a do-

main name phishing.com at the authoritative server of

.com. Although this server is out of the attacker’s con-

trol, the attacker runs and controls the authoritative server

of phishing.com.

Two phases of establishing a ghost domain name are in-

volved:

• Phase 1: Caching the delegation data of a domain

name. The attacker targets a DNS resolver and re-

quests it to resolve a name under phishing.com,

say www.phishing.com. During the resolu-

tion process, the authoritative server of .com pro-

vides the victim resolver with the delegation data of

phishing.com, such as:

;; ANSWER SECTION

;; AUTHORITY SECTION

phishing.com. 86400 IN NS ns.phishing.com.

;; ADDITIONAL SECTION

ns.phishing.com. 86400 IN A 10.0.0.1

The victim resolver accepts and caches the delega-

tion data above. After 43, 200 seconds, as shown in

Figure 2b, phishing.com is identified as a mali-

cious domain and deleted from .com. At this mo-

ment, however, the victim resolver can still resolve

phishing.com since it still caches the delegation

data of phishing.com, which will not expire until

another 43, 200 seconds later.

• Phase 2: Refreshing the cached delegation

data of the ghost name. At some point after

phishing.com has been removed from .com but

before the delegation data of phishing.com ex-

pires, the attacker manipulates the victim resolver to

conduct a series of DNS operations in order to have it

continue to cache the delegation data after the original

expiration time. These operations follow the standard

DNS protocol without violating any rules, and are as

follows.

The attacker first changes the NS record

of phishing.com to a new name, say

ns1.phishing.com, then queries the victim

resolver for the A record of ns1.phishing.com.

Based on the cached, non-expired delegation data

of phishing.com, the victim resolver learns and

contacts the authoritative server of phishing.com,

and receives a response, such as:

;; ANSWER SECTION

ns1.phishing.com. 86400 IN A 10.0.0.1

;; AUTHORITY SECTION

phishing.com. 86400 IN NS ns1.phishing.com.

;; ADDITIONAL SECTION



ns1.phishing.com. 86400 IN A 10.0.0.1

Both the answer section and the authority section con-

form to the bailiwick rule. Also, according to the cred-

ibility rule, the new NS record in the authority sec-

tion has the same trust level as the old NS record of

phishing.com in the cache. The victim resolver

will therefore overwrite the old NS record with the new

one, and the A record in the answer section and the new

NS record will form the complete delegation data of

phishing.com, i.e.:

phishing.com. 86400 IN NS ns1.phishing.com.

ns1.phishing.com. 86400 IN A 10.0.0.1

Most importantly, the new delegation data has a

fresh TTL value of 86, 400, meaning the lifetime of

phishing.com in the victim resolver starts over

now for a new round of 86, 400 seconds. In fact,

the attacker can refresh the delegation data later

again and again before the data expires, thus making

phishing.com accessible from the victim resolver

for a very long time. In another words, the resolver will

be continuously haunted by this ghost domain name,

so we also call this resolver a haunted resolver.

The attacker can target many other DNS resolvers and re-

peat the same cache-and-refresh manipulation operations as

described above with these victims. As a result, the attacker

can use phishing.com to host their malicious sites for

a long time, and users throughout the Internet would con-

tinue to be able to resolve phishing.com to attacker-

controlled IP addresses.

The success of the ghost domain name attack assumes

the attacker is able to send regular DNS queries to DNS

resolvers. This assumption is practical when the attacks tar-

get open resolvers; previous research [11] has shown that

there are still a large number of open resolvers around the

world. The assumption is also practical if the attacker is in

the service range of a DNS resolver, or he can control a bot

machine in that range thus can initiate DNS queries from

the bot machine.

4. Experiments, Results, and Analysis

While theoretically feasible according to our discussion

in Section 3, it is unclear if an attacker can indeed launch a

large-scale exploitation in the real world based on the ghost

domain vulnerability of DNS, and if so, to what extent and

at what cost. We investigate this matter in this section, fo-

cusing on the following questions:

• How many deployed DNS resolvers and DNS imple-

mentations are vulnerable?

• What would be the cost for an attacker to maintain

ghost domain names?

• For those vulnerable DNS resolvers, how long can an

attacker keep their ghost domain names in these re-

solvers?

4.1. Experimental Setup

We collected 19,045 open DNS resolvers from the query

log of a busy authoritative server, also with the help of the

authors of [28]. Table 1 shows how these resolvers are dis-

tributed around different geographic regions and different

autonomous systems (AS).

Region Count Percentage

Japan 2479 13.01

USA 2471 12.97

Russian 1987 10.43

China 1742 9.15

Taiwan 1093 5.74

Germany 1020 5.36

Poland 547 2.87

Britain 546 2.87

Italy 512 2.69

HK 348 1.93

Total 161 regions

(a) Regions

AS number Count Percentage

3462 628 3.29

538 455 2.52

4713 384 2.38

4134 351 2.01

1659 261 1.84

4837 257 1.37

4732 200 1.34

17506 164 1.05

9600 115 0.86

2907 106 0.60

Total 5474 ASes

(b) Autonomous Systems (ASes)

Table 1. Statistics of DNS resolvers used in
our experiments.

We conducted several experiments using

these resolvers. We registered a domain name

ghostdomain.info, and created ten sub-domains

([1-10].ghostdomain.info). We then con-

ducted the Phase-1 operations (as described in Sec-

tion 3) with every resolver we collected, so that

they all have a cached entry for every sub-domain of

ghostdomain.info. After four hours, we simulta-

neously remove all sub-domains from the authoritative

server of ghostdomain.info, except for one of the

ten sub-domains, 1.ghostdomain.info. We then



periodically conduct the Phase-2 operations (as described

in Section 3) for one week on every resolver for the rest

nine sub-domains, i.e., [2-10].ghostdomain.info.

Each of these nine sub-domains has a different parameter

setting for their domain names with regard to the original

TTL value (1800, 3600, and 14400 seconds)2 and the

refreshing interval for Phase-2 operations (TTL/2, TTL/4,

and TTL/8).

During the entire week, every ten minutes we probe ev-

ery resolver to see if the cached entry of a sub-domain

is still alive at every resolver, in order to learn the nor-

mal behavior after a domain name is revoked by testing

1.ghostdomain.info, and how long a ghost domain

name ([2-10].ghostdomain.info) can survive in

every resolver. Every ten minutes we also check if every

resolver can resolve www.google.com to make sure ev-

ery resolver is still reachable and functioning.

4.2. Vulnerable Public DNS Servers and Popular
DNS Implementations

Using ghostdomain.info under our control, we

tested how public DNS servers and popular DNS imple-

mentations may be susceptible to the ghost domain name

vulnerability. We discover that the distribution of the vul-

nerability is wide.

First, as shown in Table 2, we tested ten well-known

public DNS servers from five service providers. Among

tested servers, only the two from Google were not vulner-

able. Since Google’s DNS implementation was not open

source, we could not know exactly how it avoided this vul-

nerability.

As shown in Table 3, we also chose six popular DNS

vendors based on a recent DNS survey [30] and tested

if they were vulnerable: BIND, DJB dnscache, Unbound,

PowerDNS, MaraDNS and Microsoft DNS. For each ven-

dor, we first tested its latest version. For those which were

not vulnerable, we then tested their previous versions to see

at which version the vulnerability got addressed. Five out

of nine implementations, including the latest version from

the leading vendor BIND, were vulnerable. We also found

that three vendors had non-vulnerable versions, and we will

discuss their defense strategies in Section 5.

2An attacker can set a very large TTL value for the delegation data of

a malicious domain so that they can stay in cache for a very long time,

even without launching the ghost domain name attack. But most DNS

implementations have a maximum TTL limitation; they might force a DNS

resolver to reset the TTL value of a cached entry, or even simply discard

the entry if the original TTL exceeds the maximum TTL value allowed. We

have made sure the TTL values we used here are less than the maximum

TTL value allowed in DNS resolvers that we experiment with.

Service Provider IP Address Vulnerable?

Google
8.8.8.8 No

8.8.4.4 No

DNS Advantage
156.154.70.1 Yes

156.154.71.1 Yes

OpenDNS
208.67.222.222 Yes

208.67.220.220 Yes

Norton
198.153.192.1 Yes

198.153.194.1 Yes

GTEI DNS
4.2.2.1 Yes

4.2.2.2 Yes

Table 2. Vulnerability testing of public DNS

servers.

DNS Vendor Version Vulnerable?

BIND 9.8.0-P4 Yes

DJB dnscache 1.05 Yes

Unbound
1.4.11 No

1.4.7 Yes

PowerDNS Recursor 3.3 Yes

MaraDNS
Deadwood-3.0.03 No

Deadwood-2.3.05 No

Microsoft DNS
Windows Server 2008 R2 No

Windows Server 2008 Yes

Table 3. Vulnerability testing of popular DNS

implementations.

4.3. Efficacy of Maintaining Ghost Domain Names

We measured how the 19,045 open DNS re-

solvers may continue to resolve a ghost domain name

(2.ghostdomain.info). For comparison, we also

measured (1) how every resolver may continue to resolve a

continuously existent, legitimate domain name, for which

we use www.google.com; and (2) how every resolver

may continue to resolve a legitimate domain name that

gets revoked without the ghost domain operations; we use

1.ghostdomain.info for this purpose. We therefore

have three types of domain names: ghost domain name, live

legitimate domain name, and revoked legitimate domain

name.

Figure 3a shows how the DNS resolvers in our experi-

ments may continue to resolve the three different types of

domain names. By probing a resolver for a particular type

of domain name, we can identify whether it is resolvable or

not. From Figure 3a, it is clear that the three different types

of domain names present different behaviors. As expected,

a live legitimate domain name (www.google.com) can

be resolved by almost all resolvers continuously. The num-



 0

 2000

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u

m
b

e
r 

o
f 

D
N

S
 r

e
s
o

lv
e

rs
 t

h
a

t 
c
a

c
h

e
 a

 s
p

e
c
if
ic

 t
y
p

e
 o

f 
d

o
m

a
in

 n
a

m
e

Days in August 2011

live legitimate domain name
revoked legitimate domain name

ghost domain name

(a) Resolving of domain names at open DNS resolvers over time.

The dashed vertical line indicates the original TTL expiration time for

[1-2].ghostdomain.info after they are removed from domain

registry.

(b) Geographic view of open DNS resolvers that are still haunted by ghost

domain names one week later.

Figure 3. Measurement of ghost domain names at open DNS resolvers.

ber of resolvers that can resolve a revoked legitimate do-

main name (1.ghostdomain.info), however, rapidly

falls down after its TTL expires. In contrast, a ghost domain

name (2.ghostdomain.info) can be resolved by most

of DNS resolvers as time goes by, even after its TTL expira-

tion time. More than 93% of DNS resolvers still reply with a

positive response for resolving the ghost domain name after

its TTL has expired, meaning all these resolvers are vulner-

able to the ghost domain name attack. Even one week after

TTL expiration, the ghost domain names are still resolvable

by more than 70% of all DNS resolvers we collected. Fig-

ure 3b provides a geographic view of all the haunted DNS

resolvers at this time point. (We discuss later why the num-

ber of DNS resolvers that resolve a ghost domain name, i.e.

the number of haunted DNS resolvers, gradually declines as

time goes by.)

We note that after TTL expiration, a revoked legitimate

domain name can still be resolved by approximately 10%

of DNS resolvers, rather than 0% as we might expect.

This phenomenon is due to extremely loose enforcement

of cache update policy at certain resolvers that still employ

very old versions of DNS implementations. They accept

all referral sections and overwrite cached entries without

any validation. These resolvers can be haunted by a ghost

domain name even without the sophisticated attack as de-

scribed in Section 3, but simply with periodical queries of a

ghost domain name.

4.4. Cost of Maintaining Ghost Domain Names

As we have shown the vulnerability of ghost domain

in popular DNS implementations and widely deployed In-

ternet DNS resolvers, a natural question is about the cost

of launching and maintaining ghost domain names. Since

the actions required by ghost domain attacks are sending

queries to targeted resolvers, the main cost of maintaining

a ghost domain name is network bandwidth consumption.

An attacker needs to send plenty of DNS queries to refresh

the cached entries of a ghost domain name, and the amount

of such effort is proportional to the number of the targeted

resolvers. For each individual targeted resolver, the band-

width consumption of the ghost domain attack is mainly de-

termined by the refreshing interval, which is related to two

factors: the TTL value of the delegation data for the ghost

domain and the refreshing interval per TTL. The refreshing

interval relates to the TTL value because to keep the cached

data alive, at least one refreshing operation is needed before

a cached entry expires.

A naı̈ve attacker might choose a very large TTL value of

the delegation data with the hope of maintaining the ghost

domain in a resolver’s cache before refreshing it. This strat-

egy saves bandwidth, but it is not practical since most of

DNS resolvers enforce a maximum TTL limitation. We

found empirically that most of our experimental resolvers

have a maximum TTL limitation around one day (16.35%)

or one week (79.81%), which means the TTL value of the

ghost domain is limited.

For any given TTL value selected by the attacker, the

bandwidth consumption is directly related to how often at-

tackers refreshes in one TTL. Figure 4 shows the effects of

ghost domain exploitation with different TTL values and re-

freshing intervals. From the results, we observe that if the

attacker ensures that one refreshment is sent for each quarter

of TTL, additional refreshing effort can increase the effec-



 0

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u
m

b
e
r 

o
f 
re

s
o
lv

e
rs

Days in August 2011

interval = 900
interval = 450
interval = 225

(a) TTL = 1800

 0

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u
m

b
e
r 

o
f 
re

s
o
lv

e
rs

Days in August 2011

interval = 1800
interval = 900
interval = 450

(b) TTL = 3600

 0

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u
m

b
e
r 

o
f 
re

s
o
lv

e
rs

Days in August 2011

interval = 7200
interval = 3600
interval = 1800

(c) TTL = 14400

Figure 4. Establishment of ghost domain names with different TTL values and refreshing intervals.

tiveness, but not significantly. This is reasonable because

the attacker only needs to ensure one successful renewal

before the ghost domain expires. refreshing more often is

useful only to reduce the chance of packet losses. We also

see that the curves of TTL/2 refreshing interval declines

faster, since only one refresh within the TTL period might

occasionally fail, so a timely renewal of the ghost domain

cannot be ensured.

4.5.Other Factors thatAffect TheLifetime ofGhost
Domains

Through all our experiment results such as those shown

in Figure 4 and Figure 3a, we observe that the numbers of

exploited resolvers continuously decrease over time. Al-

though this declining trend is affected by the attackers’ ac-

tions (such as the refreshing frequency discussed above),

the types of the recursive resolvers turn out to affect the

lifetime of ghost domain as well.

To illustrate the impact of recursive resolver

types, we analyze the experimental data of probing

www.google.com to study when and how frequently

a cached entry (in this case, the CNAME record of

www.google.com as it has a large original TTL) gets

evicted. Knowing how a cache record could be evicted in a

resolver helps us to infer why a ghost domain could be lost.

By tracking the TTL variations of the objective entry, we

find that the experimental resolvers can be sorted into four

types based on the different TTL variations of the objective

entry.

• Stable resolvers (Figure 5a). As expected, the TTL

value monotonically decreases to zero, then go back to

the original value.

• Resolvers that occasionally become unreachable (Fig-

ure 5b). Unreachable periods derive the gap in the mid-

dle of the line. Ghost domains could fail to be renewed

during such periods.

• Proxies (Figure 5c). The TTL values form multiple

lines, which means there are multiple cache servers in

the backend. Ghost domains are easy to be lost after

churn of backend servers.

• Resolvers that occasionally lose cached entries (Fig-

ure 5d). This may be caused by several factors: cache

replacement, cache flushing, or even reset of resolvers.

These factors also could cause the loss of ghost do-

mains.

In our experiments, we find that over 85% of resolvers

that fail to keep ghost domains belong to the last two types,

which are inherently easy to lose cached entries. Less than

10% of failed resolvers come from the set of stable re-

solvers, which means stable resolvers are less likely lose

cached entries, including ghost domains. Since over 65% of

our experimental resolvers are stable from current observa-

tion of the TTL variations, we infer that a ghost domain can

stay alive for a long time. In fact, after one week, over 70%

of experimental resolvers still keep the ghost domains we

created and the decline trend is slow. We are currently ex-

ploring methods to identify the types of resolvers and study

their individual reaction to different ghost domain exploita-

tions.

5. Discussion

In this section, we discuss a few possible solutions to

fix the problem of ghost domain names. We also discuss

the current practices in some of the implementations that

are not vulnerable to this problem. Finally, we conclude

the section with a discussion of DNSSEC [2], which avoids

this problem implicitly through its strict delegation require-

ments.

5.1. Defense Approaches

The ghost domain exploitation needs to launch a query

to the target resolver. Thus a basic defense strategy is to



 0

 200000

 400000

 600000

 800000

04/08 06/08 08/08 10/08

TTL(s)

Days in August 2011

(a) Stable resolver

 0

 200000

 400000

 600000

 800000

04/08 06/08

TTL(s)

Days in August 2011

(b) Resolver with timeout

 0

 200000

 400000

 600000

 800000

04/08 06/08 08/08 10/08

TTL(s)

Days in August 2011

(c) Proxy

 0

 200000

 400000

 600000

 800000

04/08 06/08 08/08 10/08

TTL(s)

Days in August 2011

(d) Unstable resolver

Figure 5. TTL variations in different types of resolvers

have DNS administrators restrict the service range of the

DNS resolver. Also, administrators can routinely flush DNS

cache to purge possible ghost domains.

These strategies however are not fundamental solutions.

The root cause of the ghost domain problem is that the cur-

rent DNS cache update policy allows authoritative servers

to continuously renew their own delegation data in re-

solvers by themselves. Then once a domain delegates a

sub-domain, there is no guarantee that the delegation can

be revoked.

Intuitively, there are several approaches for correcting

this problem, and we consider the following three:

1. Strengthening the bailiwick rule – DNS resolver im-

plementation should tighten the bailiwick rule so that

a recursive resolver only accepts a zone’s delegation

data from authoritative server of its parent zone.

2. Refining the credibility rule – Another possible solu-

tion is to refine credibility to disallow cache overwrit-

ing when received records have the same trust level as

cached data.

3. Allowing updates with the exception of the TTL value

– Since the ghost domain attack achieves the goal of

preserving revoked domain by refreshing the delega-

tion data with a new authoritative server name and thus

a new TTL, one possible solution is to allow the cache

update with exception of the TTL value.

The first solution derives from the semantics of the baili-

wick rule. The purpose of bailiwick rule is to restrict au-

thoritative servers so that they can only give records in their

own range. From this point of view, an authoritative server

has no right to change delegation data of itself since the del-

egation should be dominated by its parent zone.

However, applying the strict bailiwick rule might cause

performance and management issues. One such issue is re-

silience to authority mismatches. Authority mismatch is a

type of DNS misconfiguration in which the delegation data

is different in the parent zone than in the child zone. Al-

though the DNS specification [20] requires that delegation

data must be consistent, previous studies [30] [27] show this

configuration error is common in practice. While the cur-

rent cache update policy is resilient to such error, the strict

bailiwick rule will ignore delegation data from the child

zone, and thus might make some of authoritative servers



unusable.

Another issue is about authoritative server migration. Al-

lowing cached NS records to be overwritten can speed up le-

gitimate migration of an authoritative server. However, with

the strict bailiwick rule and current DNS protocol, resolvers

will not be aware of the migration until cached delegation

data expires. What’s even worse, DNS administrators tend

to give large TTL values to delegation data. We measured

the TTL values of the delegation data of the top one mil-

lion Internet domains (ranked by alexa.com), and we

found that the TTL values of most popular domains are one

(12.04%) or two days (78.41%). This study indicates that

with the strict bailiwick rule, legitimate authority changes

would take days to complete.

The second approach can thwart the ghost domain prob-

lem since all self-issued delegation data has the same trust

level [13]. Also, this approach remains resilient to the au-

thority mismatch problem, as the self-issued delegation data

from the child zone has higher trust levels than those from

the parent. This approach has the additional benefit of elim-

inating some of the attack vectors that could be exploited

by cache poisoning attacks [31]. But it still suffers from the

authority migration problem.

The third approach (limiting TTL updates) does not have

penalties for the legitimate changes of authoritative servers.

This approach also remains resilient to authority mismatch,

and it is the simplest one in terms of implementation. How-

ever, we only consider this approach as a temporary solu-

tion — it does not actively address the issue of the loosely

defined update policy.

Although the second approach has more advantages in

practice, we prefer the first one as the recommended so-

lution. A strict bailiwick rule that rejects self-issued dele-

gation data is semantically correct. More importantly, the

DNS standard must clarify and formally define the cache

update policy. We hope our work will promote such efforts

in the DNS standards community.

5.2. Current Defense Implementations

As we have shown in the section 3, although the very

popular DNS implementation (BIND) and most of the pub-

lic DNS servers we tested are vulnerable, three implemen-

tations: MaraDNS (version Deadwood-3.0.03), Microsoft

DNS (version Windows Sever 2008 R2) and Unbound (ver-

sion 1.4.11), are immune to the ghost domain attack. The

immunity of the latest version of Microsoft DNS derives

from a new feature called DNS cache locking [12], but we

cannot know the details of this feature because of its pro-

prietary implementation. We reviewed the other two imple-

mentations and it turns out that each of them implemented

one of the above proposed solutions. Since there is no prior

public disclosure of the ghost domain behavior, we do not

know whether these two versions of DNS implementation

intentionally address the ghost domain name problems or

not. Nevertheless, we summarize our findings on these im-

plementations as follows: MaraDNS, has already applied

the first solution listed in the above section. It only accepts

a zone’s delegation data from its parent zone. The Unbound

DNS server adopts the 3rd solution that allows overwriting

of delegated data but keeps its old TTL value in the cache.

5.3. Delegation Semantics in DNSSEC

We also consider the implication of the ghost domain at-

tack on the DNSSEC system, and we believe a fully de-

ployed DNSSEC is immune to the ghost domain problem.

The immunity does not come from the initial intention of

DNSSEC using cryptographic signatures to protect the in-

tegrity of DNS data. Instead, the immunity is an outcome

of a strictly defined delegation behavior. In short, DNSSEC

defines a new RR type, DS (Delegation Signer), to form

a chain of trust between parent and child zone. In the

DNSSEC standard, the specification [3] explicitly states

that DS record can only be obtained from the parent zone.

Therefore a ghost domain attacker cannot renew DS record

of the ghost domain by himself. Without a valid DS record,

the trust chain will be broken, so haunted security-aware re-

solvers will only resolve the ghost domain as non-authentic

data.

However, in an environment of partial DNSSEC deploy-

ment, a security-aware resolver could still be haunted to

resolve a ghost domain as authentic results. The reason

is that partial deployment DNSSEC raises a trust anchor

management issue called “isolated DNSSEC islands” [26].

Without fully DNSSEC deployment, A security-aware re-

solver cannot validate DNS data from isolated DNSSEC-

enabled zones with one single trust anchor from the root. In-

stead, it needs to be configured with third-party trust anchor

providers, such as DNSSEC Look-aside Validation (DLV)

providers [33] [34] or public trust anchor lists [24], in or-

der to obtain DNSKEY records of isolated DNSSEC-enabled

zones to be able to authenticate their DNS data. The at-

tacker can register DNSKEY records of the ghost domain to

DLV providers and public trust anchor lists, so that DNS

data of the ghost domain could still be validated by those

trust anchors, even though the DS record is deleted from the

parent zone. To prevent this, DLV providers and public trust

anchor lists need to sync their database with DNS registries

in a timely manner. In other words, a malicious domain

not only needs to be revoked from the DNS registry, it also

should be revoked simultaneously from third-party trust an-

chor providers. We are currently investigating revocation

behaviors of several third-party trust anchor providers.



6. Related Work

Study of Malicious Domain Names. Our work is led by

an initial motivation of understanding the lifetime of mali-

cious domains and the effects of domain takedown. In pre-

vious studies [22] [23], Moore et. al. showed that most of

phishing domains stay alive for several tens of hours before

being taken down. The ghost domain problem could make

the effect of takedown unpredictable.

Malicious domains must be identified first before be-

ing taken down. Recent research has proposed many ap-

proaches to distinguish malicious domain names from be-

nign DNS usage. These approaches include extracting var-

ious features of malicious domain names from the usage of

RR records [15], leveraging registration information [14],

passive access logging [29] [1] [6] and lexical construction

[19] [35]. From an intrusion detection perspective, the ghost

domain exploitation is detectable as it has unusual usage of

DNS records.

Cache Poisoning Attacks and Countermeasures. The

ghost domain vulnerability comes from the loosely defined

sanity check of DNS cache. This weakness is also being

exploited by DNS cache poisoning attacks. As early as

1990, Steve Bellovin had indicated that a malicious DNS

server can pollute cache resolvers by piggybacking arbitrary

records in referral sections [5]. In response, the credibility

rule and the bailiwick rule were proposed [32], and then

adopted by most of DNS implementations. However, these

rules are still insecure and recently have been exploited

by the Kaminsky-class cache poisoning attack[18]. After

disclosure of the Kaminsky-class attack, a number of ap-

proaches were proposed to increase DNS forgery resistance

[10] [9] [16] [28], but only a few studies were concerned

about the weakness of the DNS cache update policy. Son

et. al. [31] gave a formal study of the bailiwick rule and the

credibility rule; this work helped us to clarify some details

of these rules.

DNS Cache Inconsistency. To some extent, the ghost

domain problem is a form of DNS cache inconsistency.

As DNS only supports a weak cache consistency by us-

ing TTL to limit the lifetime of cached copies, authorita-

tive servers cannot propagate data changes to resolvers in

a timely way, failing completely in the ghost domain case.

Previous DNS studies have proposed a few approaches to

address this problem. DNScup [8] proactively pushes data

changes from authoritative server to cache resolvers. Os-

terwail et. al. proposed Zone State Revocation [25], which

embedded DNSKEY revocation in DNS response to notify

resolvers. Such cache consistency mechanisms could po-

tentially avoid the ghost domain problem. However, con-

sidering the critical role of DNS, such a change needs to be

carefully evaluated.

DNS Misconfiguration. In [17], Kalafut et. al. presented

an interesting phenomenon named orphan DNS server. An

orphan DNS server is a DNS server which has an address

record in the DNS, even though its parent domain does not

exist. Orphan DNS servers and ghost domains are super-

ficially similar as both of them resolve domain names that

should not exist. But they are substantially different. While

orphan DNS servers come from typographical errors and

misconfiguration in top level domain zone files, ghost do-

mains are more fundamentally derived from the ambigu-

ously defined DNS cache update policy.

7. Conclusion

In this paper, we present a vulnerability in DNS cache

update policy, which prevents effective domain name revo-

cation. Attackers could cause a malicious domain name to

be continuously resolvable even after the delegated data has

been deleted from the domain registry and after the TTL

associated with entry supposed expires. These deleted but

resolvable domains are called ghost domain names.

Although we have not found evidence that the vulnera-

bility has been used by previous malicious attacks or bot-

nets, our test results show that the majority of public DNS

servers and implementations are vulnerable. Our experi-

ments have also demonstrated that a large scale exploitation

of this vulnerability is practical. This vulnerability can po-

tentially allow a botnet to continuously use malicious do-

mains which have been identified and removed from the

domain registry. The same vulnerability also potentially al-

lows attackers to make a malicious domain appeared to be

deleted at most of the DNS servers but still resolvable at

specifically targeted DNS resolvers. This makes the detec-

tion of ghost domains even more difficult.

We recommend that the DNS community apply a strict

bailiwick rule to fix this vulnerability. Several DNS imple-

mentations have adopted various defense mechanisms, but

many popular implementations are still vulnerable. Our on-

going work includes implementing patches for open source

DNS implementations and addressing possible performance

and management issues related to the implementation of a

strict DNS cache update policy.

Acknowledgments

We would like to especially thank Jason Gustafson for

valuable discussions and thoughtfully proofreading this ma-

terial, as well as Roberto Perdisci and Zhankao Wen for

assistance with experimental resource. We also grate-

fully thank the anonymous reviewers for their valuable



comments, and Jianwei Zhuge, Meng Hu, Zongxu Zhao,

Pengfei Xu, Xun Lu and Kevin Warrick for their sugges-

tions and feedback. This work was supported in part by the

National Basic Research Program of China (973 Project)

grant 2009CB320505. Kang Li’s research on this work was

partially supported by the USA National Science Founda-

tion (NSF) CISE grant 1127195 and a gift from Cisco sys-

tems. Jun Li was partially supported by the 2010 Chair of

Excellence award from the University Carlos III of Madrid

(UC3M), Spain, and the NSF CAREER award under award

no. CNS-0644434. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

funding agencies.

References

[1] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and

N. Feamster. Building a Dynamic Reputation System for

DNS. In 19th Usenix Security Symposium, 2010.
[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.

DNS Security Introduction and Requirement. RFC4033,

2005.
[3] R. Arends, R. Austein, M. Larson, D. Massey, and

S. Rose. Resource Records for the DNS Security Exten-

sions. RFC4034, 2005.
[4] D. Atkins and R. Austein. Threat Analysis of the Domain

Name System (DNS). RFC3833, 2004.
[5] S. M. Bellovin. Using the Domain Name System for System

Break-ins. In Proceedings of the 5th conference on USENIX

UNIX Security Symposium - Volume 5, pages 18–18, Berke-

ley, CA, USA, 1995. USENIX Association.
[6] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EX-

POSURE: Finding Malicious Domains Using Passive DNS

Analysis. Proceedings of Network and Distributed Security

Symposium (NDSS’11), 2008.
[7] R. Boscovich. Taking Down Botnets: Microsoft and the

Rustock Botnet. http://blogs.technet.com/b/

microsoft_on_the_issues/archive/2011/

03/18/taking-down-botnets-microsoft-

and-the-rustock-botnet.aspx, 2011.
[8] X. Chen, H. Wang, S. Ren, and X. Zhang. Maintaining

Strong Cache Consistency for the Domain Name System.

IEEE Transactions on Knowledge and Data Engineering,

19:1057–1071, 2007.
[9] D. Dagon, M. Antonakakis, K. Day, X. Luo, C. Lee, and

W. Lee. Recursive DNS Architectures and Vulnerability Im-

plications. In Proceedings of Network and Distributed Sys-

tem Security Symposium (NDSS’09), 2009.
[10] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee.

Increased DNS Forgery Resistance Through 0x20-bit En-

coding: security via leet queries. In Proceedings of the 15th

ACM conference on Computer and communications secu-

rity, pages 211–222. ACM, 2008.
[11] D. Dagon, N. Provos, C. Lee, and W. Lee. Corrupted DNS

Resolution Paths: The Rise of a Malicious Resolution Au-

thority. In Proceedings of Network and Distributed Security

Symposium (NDSS’08), 2008.

[12] M. DNS. DNS Cache Locking. http:

//technet.microsoft.com/en-us/library/

ee683892(WS.10).aspx.

[13] R. Elz and R. Bush. Clarifications to the DNS specification.

RFC2181, 1997.

[14] M. Felegyhazi, C. Kreibich, and V. Paxson. On the Poten-

tial of Proactive Domain Blacklisting. In Proceedings of the

3rd USENIX conference on Large-scale exploits and emer-

gent threats: botnets, spyware, worms, and more, LEET’10,

pages 6–6, Berkeley, CA, USA, 2010. USENIXAssociation.

[15] T. Holz, C. Gorecki, K. Rieck, and F. Freiling. Measuring

and Detecting Fast-Flux Service Networks. In Proceedings

of Network and Distributed Security Symposium (NDSS’08),

2008.

[16] J. G. Hy. Anti DNS Spoofing-Extended Query ID (XQID).

http://www.jhsoft.com/dns-xqid.htm, 2008.

[17] A. J. Kalafut, M. Gupta, C. A. Cole, L. Chen, and N. E.

Myers. An Empirical Study of Orphan DNS Servers in the

Internet. In Proceedings of the 10th annual conference on

Internet measurement, IMC ’10, pages 308–314, New York,

NY, USA, 2010. ACM.

[18] D. Kaminsky. Its the end of the cache as we know it. Black-

Hat USA, 2008.

[19] J. Ma, L. Saul, S. Savage, and G. Voelker. Beyond Black-

lists: Learning to Detect Malicious Web Sites from Sus-

picious URLs. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data

mining, pages 1245–1254. ACM, 2009.

[20] P. Mockapetris. Domain Names - Concepts and Facilities.

RFC1034, 1987.

[21] P. Mockapetris. Domain Names - Implementation and Spec-

ification. RFC1035, 1987.

[22] T. Moore and R. Clayton. Examining the Impact of Web-

site Take-Down on Phishing. In Proceedings of the anti-

phishing working groups 2nd annual eCrime researchers

summit, eCrime ’07, pages 1–13, New York, NY, USA,

2007. ACM.

[23] T. Moore and R. Clayton. The Consequence of Non-

Cooperation in the Fight against Phishing. In eCrime Re-

searchers Summit, 2008, pages 1–14. IEEE, 2008.

[24] E. Osterweil, D. Massey, and L. Zhang. Deploying and mon-

itoring dns security (dnssec). Computer Security Applica-

tions Conference, Annual, 0:429–438, 2009.

[25] E. Osterweil, V. Pappas, D. Massey, and L. Zhang. Zone

State Revocation for DNSSEC. In Proceedings of the 2007

workshop on Large scale attack defense, LSAD ’07, pages

153–160, New York, NY, USA, 2007. ACM.

[26] E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quanti-

fying the Operational Status of the DNSSEC Deployment.

In Proceedings of the 8th ACM SIGCOMM conference on

Internet measurement, IMC ’08, pages 231–242, New York,

NY, USA, 2008. ACM.

[27] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang.

Impact of Configuration Errors on DNS Robustness. In ACM

SIGCOMM Computer Communication Review, volume 34,

pages 319–330. ACM, 2004.

[28] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee. WSEC

DNS: Protecting Recursive DNS Resolvers from Poisoning



Attacks. In IEEE/IFIP International Conference on De-

pendable Systems & Networks, DSN’09., pages 3–12. IEEE,

2009.

[29] R. Perdisci, I. Corona, D. Dagon, andW. Lee. DetectingMa-

licious Flux Service Networks through Passive Analysis of

Recursive DNS Traces. In Annual Computer Security Appli-

cations Conference, volume 0, pages 311–320, Los Alami-

tos, CA, USA, 2009. IEEE Computer Society.

[30] G. Sisson. DNS SURVEY. http://dns.

measurement-factory.com/surveys/201010/,

2010.

[31] S. Son and V. Shmatikov. The Hitchhikers Guide to DNS

Cache Poisoning. In Security and Privacy in Communica-

tion Networks, volume 50 of Lecture Notes of the Institute

for Computer Sciences, Social Informatics and Telecommu-

nications Engineering, pages 466–483. Springer Berlin Hei-

delberg, 2010.

[32] P. Vixie. DNS and BIND Security Issues. In Proceedings of

the 5th conference on USENIX UNIX Security Symposium -

Volume 5, pages 19–19, Berkeley, CA, USA, 1995. USENIX

Association.

[33] P. Vixie. Preventing Child Neglect in DNSSECbis Using

Lookaside Validation(DLV). IEICE Transactions on Com-

munications, pages 1326–1330, 2005.

[34] S. Weiler. DNSSEC Lookaside Validation (DLV).

RFC5074, 2007.

[35] S. Yadav, A. Reddy, A. Reddy, and S. Ranjan. Detecting

Algorithmically Generated Malicious Domain Names. In

Proceedings of the 10th annual conference on Internet mea-

surement, pages 48–61. ACM, 2010.


