
© 2015 ISC

BIND 9.12 Refactoring
and Performance

Advances

September 2017

Evan Hunt
each@isc.org

© 2015 ISC

Where we came from

 BIND 9 project started 1998
 Now approaching half a million lines of code

– 3x PowerDNS
– 5x Unbound
– 6x Knot authoritative

 Decisions were made that need revisiting:
 Hardware, memory, and DNS assumptions from

circa Y2K
 Function design that didn’t extend cleanly as

new features were added
 Module design doesn’t afford testability

© 2015 ISC

Example: query_find()

 Implements query processing logic
 800 LOC and multiple goto statements in original BIND

release (i.e., already a hairball)
 2400 LOC and more gotos in BIND 9.11 (2016).
 McCabe Complexity: 468 (20-30 is considered high)
 Original query logic, plus:

 dns64
 RPZ
 RRL
 NXDOMAIN redirection
 Prefetch
 Etc...

© 2015 ISC

Example: resquery_response()

 Handles responses from authoritative servers
 400 LOC in original BIND release
 1100 LOC in BIND 9.11 (2016).
 McCabe complexity 175
 Original logic, plus:

 EDNS error handling
 Other exceptional cases
 Statistics
 DNSTAP
 Etc...

© 2015 ISC

Testability Issues
 BIND has extensive system/integration level testing

– over 100 system tests with many hundreds of
subsidiary test cases)

– ~45,000 lines of test code in shell/perl
 Ongoing fuzz testing (thank you AFL)
 Ongoing performance testing (thank you Ray)
 We have been adding unit tests in newly added library

code since ~2010. BUT:
– Much of the query processing is implemented in the

named binary, not in libraries...
– So in addition to functions being too big to

reasonably unit test, many are not in a place that a
unit test can link to

© 2015 ISC

Where we are

 In 2016, Witold Krecicki and I began a project to
break up the largest functions and reduce their
complexity

 I started a project to move query functions from
named to libns so unit tests (when written) can link
to them

© 2015 ISC

resquery_response()

 Broken into ~30 smaller functions
 Most have less than 100 lines of code
 Most are under 20 McCabe complexity
 Worst remaining complexity 68

 Added comments detailing call flow
 Unit tests to come

© 2015 ISC

query_find()

 Moved into libns
 Broken into ~35 smaller functions

 Most have less than 100 lines of code
 Most are under 20 McCabe complexity
 Worst remaining complexity ~50

 Added comments documenting call flow
 Unit tests have been started (but still minimal)

© 2015 ISC

Testability

 Still an ongoing process, but we’re in a better
position for unit tests of name server code

 System test code coverage in affected functions is
above 80% (mostly lacking pathological cases)

© 2015 ISC

Performance

 BIND systems for memory management, task
management, etc, were designed with
assumptions no longer valid

 Years of new features have been added without
measurement of performance regression (thanks
to Ray Bellis for addressing this with perflab!)

 In 2016, Mukund Sivaraman began a project to
identify bottlenecks and address them.

© 2015 ISC

Performance (cont’d)

 BIND was particularly weak (compared to other
name servers) with delegation-heavy zones such
as root and TLDs

 Lots of rdata lookups per response
 minimal-responses helped a lot
 acache helped a little

 Even in non-delegation-heavy operation, there was
inefficiency

© 2015 ISC

Performance work done
 Refactored several basic functions:

 Name compression
 Name capitalization
 Hashing
 Buffer operations

 Turn on minimal-responses by default
 Removed acache; replaced with much more efficient glue

cache (also on by default)
 Improve lock contention
 No specific RRset ordering
 Option to use system malloc
 Don’t fill memory by default

© 2015 ISC

Performance results

 When serving the root zone:
 9.11 (default settings): 63 kqps
 9.11 (acache, minimal-responses): 102 kqps
 9.12: 390 kqps
 Speedup: factor 4-6

 When serving typical authoritative domains:
 9.11 (default settings): 540 kqps
 9.12: 674 kqps
 Speedup: factor 1.25

© 2015 ISC

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

