DNSSEC
Your Internet infrastructure needs better protection

Matthijs Mekking, ISC
Matthijs, ISC

- Working on DNS and DNSSEC for 18 years
 - NLnet Labs (research, dev)
 - OpenDNSSEC (dev)
 - Dyn (DNS provider)
 - ISC (dev BIND 9)
 - IETF (standards)
What is DNSSEC
What is DNSSEC

- Digital signatures on RRsets
- Hierarchical PKI
 - End-to-end integrity
 - Origin authentication
- A set of IETF specifications
 - RFC 4033 4034 4035, and more
- Backwards compatible with DNS
Why DNSSEC

- Prevent cache poisoning
 - Data integrity and authentication

- Bootstrap other security systems
 - DANE: TLSA
 - IPSECKEY
 - SSHFP
What DNSSEC doesn’t do

- Privacy/confidentiality
- DDoS protection
- Message security
- Access control

Not a silver bullet, but a building block for a more secure Internet infrastructure
How DNSSEC works

Diagram showing the process of how DNSSEC works in a recursive resolver context, starting with a cache query and leading to root server interactions.
How DNSSEC works
Status of DNSSEC
History of DNSSEC

- **1987**: DNS
- **1990**: Bellovin
- **1995**: RFC 2065
- **1997**: RFC 2535
- **1999**: DS
- **2005**: .se
- **2008**: NSEC3
- **2009**: Kaminksy
- **2010**: Root signed
- **2018**: Root key rollover
Deployment status

- Signing:
 - Root, 91% tld
 - 3% Fortune 1000

- Validation:
 - ~20% (APNIC)
 - Includes Google, CloudFlare

<table>
<thead>
<tr>
<th>Domain</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>.no</td>
<td>58%</td>
</tr>
<tr>
<td>.se</td>
<td>54%</td>
</tr>
<tr>
<td>.nl</td>
<td>53%</td>
</tr>
<tr>
<td>.ch</td>
<td>4%</td>
</tr>
<tr>
<td>.com</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
Deployment challenges

- Perceived complexity of DNSSEC
 - Long standardization process
 - Early adopter DNSSEC errors highlighted
- Wide variety of many DNS systems
- Root DNSSEC key ownership
 - Trusted Community Representatives
- The incentive problem
 - “All work and no play makes Jack a dull boy”
 - The costs outweigh the benefit
DNSSEC Weaknesses

 - Complex to implement
 - Increased work load
 - The last mile
 - Increased DNS response size
- Weak error signaling (SERVFAIL)
Arguments used against DNSSEC

- DNSSEC is complex
- It is computational heavy
- DNS poisoning risk is low
- Root key owners control the DNS
- The last mile is insecure
- There are better alternatives
- SERVFAIL: Bad error signaling
- DNSSEC means amplification attacks
- The costs outweigh the benefit
Debunking arguments against DNSSEC
DNSSEC

its just so hard...
It’s not
DNSSEC Software

- Signing:
 - BIND 9, Knot DNS, PowerDNS, OpenDNSSEC (+appliances, closed)

- Validating:
 - BIND 9, Unbound, Knot Resolver, PowerDNS (+appliances, closed)
DNSSEC Software

- Push the button config, one page docs
- Many config options for corner cases
 - Soft validation
 - Negative trust anchors
- Auto resign, ZSK management
- Tools for making KSK rollover easier
 - Requires DS update in parent zone
 - Not required for normal operation
- Provide support contracts
More work load
The cost of validation

- More computational resources
- More DNS queries (DNSKEY, DS)
 - Up to 5x more queries with no cache
 - Up to 4x slower with no cache
 - Implementation dependent
- But...
The cost of validation

- Caching helps a lot
 - Equal number of queries and time
Cache poisoning risk low
The threat is real

- Kaminsky attack
 - Made cache poisoning trivial
 - Source port randomization made it 65536 times harder
 - But that is just patch work
DNSSEC Usage in Switzerland is on the rise after widespread attacks on the Domain Name System

Attacks on the DNS System
Cyber attacks on the DNS system are not new. Cache poisoning, Domain Hijacking and BGP injections of

ICANN warns of “ongoing and significant” attacks against internet’s DNS infrastructure

Zack Whittaker @zackwhittaker / 1 month ago

Core internet infrastructure plagued by 'multifaceted' attacks:
Details here

Written By Shubham Sharma

The Internet Corporation for Assigned Names and Numbers, which is the organization responsible for managing Internet addresses, claims the core infrastructure of the internet is under attack.

ICANN has issued a warning noting that the key parts of the DNS infrastructure are at risk of attacks and have to be protected with a new technique.

Here's more on this issue and ICANN's potential solution.
Elders of the Internet
TCRs

- **Trusted Community Representatives:**
 - Recognized members of the DNS technical community from various regions to perform key management

- **Goal:**
 - Improve confidence and acceptance in the DNSSEC security mechanism among the wider Internet community
Resolver to client
Resolver to client

- Validation at the client
 - DNSSEC-Trigger
 - getdns API for applications

- Securing the transport
 - DNS over TLS (DoT), DNS over HTTPS (DoH)
Alternative solutions
Alternatives to DNSSEC

- Channel security mechanisms
 - DNSCurve
 - DNSCrypt
 - DNS over TLS (DoT)
 - DNS over HTTP (DoH)
 - Hop-by-hop authentication
Alternatives to DNSSEC

There is no real alternative for providing data integrity and origin authentication.
SERVFAIL

THIS IS FINE.
DNS Extended Errors

4.1.5. SERVFAIL Extended DNS Error Code 5 - DNSSEC Indeterminate

4.2. INFO-CODEs for use with RESPONSE-CODE: SERVFAIL(2) ...

4.2.1. SERVFAIL Extended DNS Error Code 1 - DNSSEC Bogus ..

4.2.2. SERVFAIL Extended DNS Error Code 2 - Signature Expired

4.2.3. SERVFAIL Extended DNS Error Code 3 - Signature Not Yet Valid

4.2.4. SERVFAIL Extended DNS Error Code 4 - DNSKEY missing .

4.2.5. SERVFAIL Extended DNS Error Code 5 - RRSIGs missing .

4.2.6. SERVFAIL Extended DNS Error Code 6 - No Zone Key Bit Set

4.2.7. SERVFAIL Extended DNS Error Code 7 - No Reachable Authority

4.2.8. SERVFAIL Extended DNS Error Code 8 - NSEC Missing ..

4.2.9. SERVFAIL Extended DNS Error Code 9 - Cached Error ..

4.2.10. SERVFAIL Extended DNS Error Code 10 - Not Ready ..
Amplification

- This is also possible without DNSSEC
- Mitigations:
 - Refuse ANY
 - Enable minimal responses
 - DNSSEC Combined Signing Key
Amplification

- RSA 1024 bit: ~132 bytes DNSKEY
- RSA 2048 bit: ~260 bytes DNSKEY
- ECDSA:
 - ECC P-256 bit: ~100 bytes DNSKEY
 - Equally strong to RSA 3100 bit
 - Towards 512 bit DNSSEC responses
 - Much faster signing
 - But slower validation
To conclude
Costs versus benefit

- DNSSEC has become a lot better
 - More mature software
 - Protocol improvements
- Rise of DNS attacks
- Financial incentive programs
DNSSEC Call for Adoption

- Protect your Internet infrastructure
 - Prevent cache poisoning
 - Data integrity, origin authentication
- Bootstrap other security systems
 - TLSA, SSHFP, IPSECKEY, ...
- Easy deployment
 - Software matured, push the button
- Some protocol weaknesses exist
 - But improvements are on the way!
Links

Information and sources
- **IETF:** https://www.ietf.org
 - Elliptic Curve Digital Signature Algorithm (DSA) for DNSSEC https://tools.ietf.org/html/rfc6605
 - DNS over TLS: https://tools.ietf.org/html/rfc7858
 - DNS over HTTPS: https://tools.ietf.org/html/rfc8484
- **IANA:**
 - **Trusted Community Representatives:** https://www.iana.org/dnssec/tcrs
- **Deploy360:** https://www.internetsociety.org/deploy360/dnssec/ https://www.dnssec-deployment.org/
- **APNIC Measurements:** https://labs.apnic.net/
- **OpenINTEL:** https://openintel.nl/
- **The Cost of DNSSEC:** https://www.potaroo.net/ispcol/2014-08/dnsseccost.pdf

Software
- **ISC (BIND 9):** https://www.isc.org/
- **NLnet Labs (Unbound, OpenDNSSEC, DNSSEC-Trigger):** https://nlnetlabs.nl/ https://www.opendnssec.org/
- **getdns:** https://getdnsapi.net/
- **Open-Xchange (PowerDNS):** https://www.powerdns.com/

News
- **ICANN Calls for Full DNSSEC Deployment, Promotes Community Collaboration to Protect the Internet**
- **DNSSEC Usage in Switzerland is on the rise after widespread attacks on the Domain Name System**
 - https://securityblog.switch.ch/2019/04/02/dnsseccinswitzerland2019/
DNSSEC Panel

- Raise your questions and concerns!
- How can we make things easier?