Multi-vendor DNS Cookies

Willem Toorop & Ondřej Surý
IETF 102, Montreal
DNS Cookies 101

- Handshake between Client and Server to get the Cookie
- No Cookie? No Large Answers!
- Cookie? Large Answers!
- Cookie? RRL Disabled!
Why DNS Cookies?

- DNS Native Protection Mechanism against Amplification Attacks
 - No operator asked for this, it’s DNS vendor initiative.
 - Protection in the DNS itself, no traffic engineering needed.
- To be helpful, it needs to be enabled everywhere.
- Multi-vendor cooperation desirable.
Operational Impacts

- Good
 - Improved policies based on Cookies
 - Better responsiveness under attack
- Bad
 - Anycasts
 - State-synchronization
Anycast Deployments

- Multiple implementations deployed at the same anycast node

- The deployed servers should share:
 - Same server cookie secret
 - Same cookie algorithm

- Clients should handle multiple cookies, if compliant, but…
The Real World

- Mix of servers with and without DNS Cookies
 - Different deployment schedule
 - Different software and different state of implementation
 - Different operators
 - Unconfigured server pick server secret at random
 - Different default algorithms
 - Incompatible algorithms
- There are deployments that change the server at anycast node very often (even every request) — like K-Root
The Solution

• Define a mandatory DNS Cookie algorithms
 • Both the crypto functions and how the input data into the function is processed
• Add SipHash — pseudo-random function (PRF)
 • Designed to network traffic authentications
 • Seems like best fit
• Define optional algorithms to implement:
 • HMAC-SHA256+
 • AES
• Remove non-cryptographically secure algorithms (FNV)
• Provide guidance to the DNS operators
Questions?