Hyper-Hyper-Local Root Ray Bellis, Internet Systems Consortium, Inc.

@raybellis

Local Root Mirroring

- RFC 7706 too prescriptive (IMHO)
- There's no need to put the root zone in <u>every</u> resolver

• A single local root server instance can support large numbers of resolvers

Fast Root ("froot")

- Root zone only
- Pre-compiled answers, with DNSSEC
- Pre-calculated compression offsets
- Linux raw sockets
- Saturate a 10GE NIC with four x86 CPU cores

- No .arpa or root-servers.org zone support
 - MUST NOT be used on a root server Anycast address
 - Use "static-stub" support in BIND to forward root zone queries

Zone Support

Pre-compiled Answers

- Root zone is loaded and parsed
- Every possible answer is generated, assuming minimum possible valid query length (per QNAME Minimisation)
- Data structure allows for closest-match for serving relevant NSEC3 records
- Each answer record contains a table of the wire offset of every compression pointer

Raw Sockets

- To avoid interference from the kernel, uses a separate IPv4 address
 - Requires answering ARP requests
 - Also responds to ICMPv4 ping
- Also does IPv6 "link local"
 - Neighbour Discovery
 - ICMPv6 ping

- Full TCP is non-trivial
- implements Geoff and George's "Stateless TCP"
 - "Good enough" TCP support for low-loss local networks
 - Not capable of serving AXFRs
- It works!
- It might still be a bad idea...

TCP

Fast Root on a Raspberry Pie

- 15,000 QPS on a RPi 3B
 - Probably more on a 3B+
- 13 MB RAM footprint
- 43 MB SD card image built with Nard SDK
 - Edit the config file to assign static IP
 - Turn it on!

Fast Root on a Raspberry Pi

- 15,000 QPS on a RPi 3B
 - Probably more on a 3B+
- 13 MB RAM footprint
- 43 MB SD card image built with Nard SDK
 - Edit the config file to assign static IP
 - Turn it on!

Source Repos

https://github.com/isc-projects/froot-src

https://gitlab.isc.org/isc-projects/froot-pi

"isc" branch - pre-compiled binaries coming soon

Linux Performance Considerations

Multi Queue NIC Handling Raw Sockets and CPU affinity

Multi-Queue NICs

- High speed NICs have multiple RX and TX queues
- Optimum RX performance from one queue IRQ assigned per CPU core
- NICs use a hash on the packet header to chose the queue
- Insufficient packet header entropy causes queue imbalance
- Queue imbalance negatively impacts performance

Linux IPv4 Packet Steering

- Use multiple sockets with SO_REUSEPORT (Kernel 3.9+)
 - Let the kernel wake up a single listener
- Assign sockets to cores (Kernel 4.4+)
 - Let the kernel wake up the right listener
 - setsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu, sizeof(cpu));

Linux Raw Packet Steering

- Use packet fanout so packets only go to one socket
- Use packet fanout cpu mode:

"selects the socket based on the CPU that the packet arrived on"

New Linux Tools

dnsgen ethq

- Raw (AF PACKET) sockets so Linux only
- 4096 source ports per thread (default)
 - High entropy ensures good queue distribution on server
- Loads dnsperf files, but prefers pre-compiled binary packet format
- Includes a DNS packet echo server for benchmarking
- https://github.com/isc-projects/dnsgen

dnsgen

- top for NICs
- Displays real-time per-queue NIC statistics - show queue imbalances
- Uses Linux-only ethtool API
- Needs per-driver support please contribute sample ethtool output
- https://github.com/isc-projects/ethg

ethq

	14:56:22	NIC	TX pkts	RX pkts	TX bytes	RX bytes	TX Mbps	
	enp	5s0f1	726672	747035	69965286	57557174	559.722	
		0	59320	62775	5709083	4836621	45.673	
		1	59466	62792	5725248	4837914	45.802	
		2	59066	62679	5687140	4829276	45.497	
		3	60860	62710	5860540	4831605	46.884	
5		4	61286	62720	5899417	4832451	47.195	
		5	61321	62679	5904821	4829247	47.239	
		6	61070	62794	5880085	4838078	47.041	
		7	60945	62767	5869452	4836078	46.956	
		8	61439	61273	5915464	4720914	47.324	
		9	60114	61286	5787753	4721987	46.302	
		10	61132	61289	5884760	4722195	47.078	
		11	60653	61271	5841523	4720808	46.732	

RX Mbps 460.457 38.693 38.703 38.634 38.653 38.660 38.634 38.705 38.689 37.767 37.776 37.778 37.766

Questions?