Kea Webinar

Monitoring, Logging and Stork

Carsten Strotmann

18th November 2020

https://www.isc.org
Welcome

• Welcome to part five of our webinar series "the KEA DHCP Server"
About this Webinar

• Stork Dashboard for Kea
• A tour of Stork
• Other Monitoring options
• Logging in Kea
• Performance testing
Stork Dashboard for Kea
Stork Dashboard for Kea
What is Stork?

• Stork is a dashboard for Kea DHCP
 • monitoring of Kea
 • monitoring of Kea High-Availability state
 • alerting mechanisms that indicate failures, fault conditions, and other unwanted events
What is Stork?

• It is under active development
• monthly releases
• it is usable and useful
• but not feature complete (as of November 2020)
• there are rough edges
Platforms

- Stork is available for
- Ubuntu Linux (18.04 and 20.04)
- Fedora Linux 31, 32 and 33
- RedHat/CentOS 7/8
- macOS*
- Stork might work on other Unix(ish) platforms
- Stork can run co-located with a Kea service, or can run on a dedicated machine

* macOS is not and will not be officially supported but the developers use and test on macOS
Architecture
Requirements

• Kea Control Agent configured and running
• PostgreSQL Database (version 11 or later)
Installation (from packages)

• Packages for Stork are available in the ISC repositories from cloudsmith.io
 • RedHat/CentOS/Fedora
 • Debian/Ubuntu
Installation on CentOS 8

• Download and enable the repository data

```
# dnf install yum-utils pygpgme
# rpm --import 'https://dl.cloudsmith.io/public/isc/stork/cfg/gpg/gpg.77F64EC2053D1FB.key'
```

• inspect the repository data, then enable the repository

```
# less /tmp/isc-stork.repo
# dnf config-manager --add-repo '/tmp/isc-stork.repo'
```
Installation on CentOS 8

- Update the repository database

```bash
# dnf makecache --enablerepo='isc-stork'
CentOS-8 - AppStream
CentOS-8 - Base
CentOS-8 - Extras
isc-stork
isc-stork
Importing GPG key 0x8053D1FB:
  Userid : "Cloudsmith Package (isc/stork) <support@cloudsmith.io>"
  Fingerprint: 7AB5 064B 08F0 69A1 A5CC 500C 77F6 4EC2 8053 D1FB
  From: https://dl.cloudsmith.io/public/isc/stork/cfg/gpg/gpg.77F64EC28053D1FB.key
Is this ok [y/N]: y
[...]
```
Installation on CentOS 8

- Install the Stork-Agent and -Server

```
# dnf install isc-stork-agent isc-stork-server
```

Dependencies resolved.

Transaction Summary

Install 2 Packages

Total download size: 31 M
Installed size: 68 M
Is this ok [y/N]:

All content © 2020 Internet Systems Consortium, Inc.
PostgreSQL

• The Stork agent requires an PostgreSQL database to store configuration and historical monitoring data

• RedHat/CentOS 8 provides different version of the PostgreSQL database server in its AppStream repositories. Select the Version 12 (Version 10 is the default).
```
[root@kea-test ~]# dnf module enable postgresql:12
isc-stork                                                                                      675  B/s |  473  B | 00:00
isc-stork-noarch                                                                              687  B/s |  473  B | 00:00
isc-stork-source                                                                             636  B/s |  473  B | 00:00
Dependencies resolved.

<table>
<thead>
<tr>
<th>Package</th>
<th>Architecture</th>
<th>Version</th>
<th>Repository</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>postgresql</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transaction Summary

Is this ok [y/N]:
```
```
# dnf module list postgresql
# dnf module list postgresql
Last metadata expiration check: 0:03:10 ago on Fri 13 Nov 2020 11:00:55 AM CET.
CentOS-8 - AppStream

<table>
<thead>
<tr>
<th>Name</th>
<th>Stream</th>
<th>Profiles</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>postgresql</td>
<td>9.6</td>
<td>client, server [d]</td>
<td>PostgreSQL server and client module</td>
</tr>
<tr>
<td>postgresql</td>
<td>10 [d]</td>
<td>client, server [d]</td>
<td>PostgreSQL server and client module</td>
</tr>
<tr>
<td>postgresql</td>
<td>12 [e]</td>
<td>client, server [d]</td>
<td>PostgreSQL server and client module</td>
</tr>
</tbody>
</table>

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled
```
dnf install postgresql-server postgresql-contrib

Last metadata expiration check: 0:04:20 ago on Fri 13 Nov 2020 11:00:55 AM CET.

Dependencies resolved.

==
Package Architecture Version Repository Size
==
Installing: x86_64 12.1-2.module_el8.1.0+273+979cf6e6 AppStream 5.5 M
Installing dependencies: x86_64 60.3-2.el8_1 BaseOS 8.8 M
libpq x86_64 12.4-1.el8_2 AppStream 195 k
postgresql x86_64 12.1-2.module_el8.1.0+273+979cf6e6 AppStream 1.4 M

Transaction Summary
==
Install 4 Packages

Total download size: 16 M
Installed size: 62 M
Is this ok [y/N]:

All content © 2020 Internet Systems Consortium, Inc.
PostgreSQL

• Initialize the database

```bash
# postgresql-setup --initdb
* Initializing database in '/var/lib/pgsql/data'
* Initialized, logs are in /var/lib/pgsql/initdb_postgresql.log
```
• Start the PostgreSQL database system

systemctl enable --now postgresql
Created symlink /etc/systemd/system/multi-user.target.wants/postgresql.service → /usr/lib/systemd/system/postgresql.service.
• create the user stork and an empty database stork_db for Stork:

```bash
# su - postgres
$ psql postgres
psql (12.1)
Type "help" for help.

postgres=# CREATE USER stork WITH PASSWORD 'secure-password';
CREATE ROLE
postgres=# CREATE DATABASE stork_db;
CREATE DATABASE
postgres=# GRANT ALL PRIVILEGES ON DATABASE stork_db TO stork;
GRANT
postgres=# \c stork_db
postgres=# CREATE EXTENSION pgcrypto;
CREATE EXTENSION
postgres=# \q
```
Stork Agent configuration

- the Stork-Agent is configured via environment variables
- the variables are defined in `/etc/stork/agent.env` and will be read by the init-system or systemd
address to bind ie. for listening
STORK_AGENT_ADDRESS=2001:db8:500::8547
STORK_AGENT_PORT=8547

settings for exporting stats to Prometheus
STORK_AGENT_PROMETHEUS_KEA_EXPORTER_ADDRESS=192.0.2.47
STORK_AGENT_PROMETHEUS_KEA_EXPORTER_PORT=9547
STORK_AGENT_PROMETHEUS_KEA_EXPORTER_INTERVAL=60
Starting the Stork Agent

• once the Agent configuration is complete, the Stork-Agent can be started

```bash
# systemctl enable --now isc-stork-agent

[root@kea-test ~]# systemctl status isc-stork-agent
● isc-stork-agent.service - ISC Stork Agent
   Loaded: loaded (/usr/lib/systemd/system/isc-stork-agent.service; enabled; vendor preset: disabled)
   Active: active (running) since Fri 2020-11-13 11:23:28 CET; 9s ago
     Docs: man:stork-agent(8)
     Main PID: 5411 (stork-agent)
     Tasks: 6 (limit: 12210)
     Memory: 7.0M
     CGroup: /system.slice/isc-stork-agent.service
           └─5411 /usr/bin/stork-agent

```
Stork Server configuration

• the Stork-Server is configured via environment variables
• the variables are defined in /etc/stork/server.env and will be read by the init-system or systemd
database settings
STORK_DATABASE_HOST=192.0.2.55
STORK_DATABASE_NAME=stork_db
STORK_DATABASE_USER_NAME=stork
STORK_DATABASE_PASSWORD=secure-password

ReST API settings
STORK_REST_HOST=
STORK_REST_PORT=
STORK_REST_TLS_CERTIFICATE=
STORK_REST_TLS_PRIVATE_KEY=
STORK_REST_TLS_CA_CERTIFICATE=
STORK_REST_STATIC_FILES_DIR=/usr/share/stork/www
Starting the Stork Server

* systemctl enable --now isc-stork-server

* systemctl status isc-stork-server

- ISC Stork Server
 - Loaded: loaded (/usr/lib/systemd/system/isc-stork-server.service; enabled; vendor preset: disabled)
 - Active: active (running) since Fri 2020-11-13 12:22:13 CET; 2s ago
 - Docs: man:stork-server(8)
 - Main PID: 6984 (stork-server)
 - Tasks: 7 (limit: 12210)
 - Memory: 19.6M
 - CGroup: /system.slice/isc-stork-server.service
 - 6984 /usr/bin/stork-server

Prometheus

• Prometheus is a popular monitoring framework written in Go
 • https://prometheus.io
 • originally developed at SoundCloud
 • development is overseen by the Cloud Native Computing Foundation https://cncf.io/
• Stork can export monitoring information towards Prometheus
 • Stork is an Prometheus Exporter
 • The use of Prometheus for Stork is optional
Grafana

• Grafana is a popular monitoring dashboard that can be used to visualize monitoring data from an Prometheus system

• https://grafana.com/

• Grafana provides additional visualization options for Kea DHCP data

• The use of Grafana for Stork is optional
Grafana
Tour a Stork
User Management
User Management

Welcome to Stork!

Stork is a monitoring solution for ISC KAIK DHCP and ISC BIND 9.

The Stork documentation describes how to configure and use Stork.

Currently, there are no machines to monitor defined in Stork. To add a new machine visit the machines page.

Stork uses the status-get command to collect information about KAIK status. This command was introduced in KAIK 1.7.3 and backported to 1.6.3. As such, Stork is not able to fully interact with older KAIK versions.
User Management
User Management

Creating new account

To create a new user account, please specify a username, first name, and last name. An email address is optional but strongly recommended. If an email is provided, the user can sign in either using the login or the email address. The password is mandatory and must be at least 8 characters long.

The user must be associated with an existing system group. Currently there are two groups available: super-admin and admin. Users belonging to the super admin group have full control over the system, including creating and modifying user accounts. Users belonging to the admin group have similar permissions, with the exception that they are not allowed to create and/or modify user accounts. However, they are allowed to update their own passwords.
User Management
Adding Machines
Adding Machines
Adding Machines
Adding Machines
Status Information
Monitoring Service Health
Pool Utilization
Pool Utilization

<table>
<thead>
<tr>
<th>Subnet ID</th>
<th>Subnet</th>
<th>Addresses</th>
<th>Used %</th>
<th>Pools</th>
<th>Shared Network</th>
<th>AppID @ Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.0.5.0/24</td>
<td>50 6</td>
<td>12%</td>
<td>192.0.5.1-192.0.5.90</td>
<td>frog</td>
<td>1 @ agent-lea</td>
</tr>
<tr>
<td>2</td>
<td>192.0.6.0/24</td>
<td>110 1</td>
<td>0.9%</td>
<td>192.0.6.1-192.0.6.41</td>
<td>frog</td>
<td>1 @ agent-lea</td>
</tr>
<tr>
<td>3</td>
<td>192.0.7.0/24</td>
<td>50 5</td>
<td>4%</td>
<td>192.0.7.1-192.0.7.50</td>
<td>frog</td>
<td>1 @ agent-lea</td>
</tr>
<tr>
<td>4</td>
<td>192.0.8.0/24</td>
<td>50 50</td>
<td>2%</td>
<td>192.0.8.1-192.0.8.50</td>
<td>frog</td>
<td>1 @ agent-lea</td>
</tr>
<tr>
<td>5</td>
<td>192.0.9.0/24</td>
<td>50 1</td>
<td>2%</td>
<td>192.0.9.1-192.0.9.50</td>
<td>frog</td>
<td>1 @ agent-lea</td>
</tr>
<tr>
<td>6</td>
<td>192.10.0.0/24</td>
<td>50 50</td>
<td>24%</td>
<td>192.10.15.1-192.10.15.50</td>
<td>mouse</td>
<td>1 @ agent-lea</td>
</tr>
<tr>
<td>7</td>
<td>192.11.0.0/24</td>
<td>150 1</td>
<td>0.6%</td>
<td>192.11.16.1-192.11.16.100</td>
<td>mouse</td>
<td>1 @ agent-lea</td>
</tr>
<tr>
<td>8</td>
<td>192.12.0.0/24</td>
<td>245 1</td>
<td>0.4%</td>
<td>192.12.17.1-192.12.17.246</td>
<td>mouse</td>
<td>1 @ agent-lea</td>
</tr>
</tbody>
</table>

![DHCP Subnets Screenshot](image-url)
Pool Utilization
Pool Utilization
HA-Health Status
Stork REST API

• Like all parts of Kea, Stork has an extensive REST/JSON API to automate management
 • add/delete machines
 • manage users
 • fetch log files
 • fetch events
 • get reservations
 • get DHCP statistics on subnets
Stork REST API

- The API documentation can be found in the Help menu.
Stork REST API

- The API documentation can be found in the Help menu.
Other Monitoring
Leases from a memfile

• Mike Miller has created two shell scripts that list the DHCPv4 and DHCPv6 leases from a memfile database

• Homepage:

% kea-show-leases4.sh

<table>
<thead>
<tr>
<th>IPAddr</th>
<th>HWAddr</th>
<th>Lease Start</th>
<th>Renew</th>
<th>Expire</th>
<th>Hostname</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20.2.7</td>
<td>z0:z1:d9:z5:7c:36</td>
<td>14400</td>
<td>20150905T113158</td>
<td>20150905T133158</td>
<td>host1.</td>
<td>0</td>
</tr>
<tr>
<td>10.20.2.6</td>
<td>0z:1z:d9:z5:7c:35</td>
<td>14400</td>
<td>20150905T112931</td>
<td>20150905T132931</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>10.20.2.234</td>
<td>zz:75:0z:1a:a0:98</td>
<td>14400</td>
<td>20150905T112029</td>
<td>20150905T132029</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>172.20.2.222</td>
<td>az:z3:cz:c4:4b:00</td>
<td>14400</td>
<td>20150905T110758</td>
<td>20150905T130758</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Leases from a SQL database

- The presenter of this webinar has created a simple python3 script that lists the leases from a PostgreSQL Kea lease database
- Source:
 https://git.sr.ht/~cstrotm/kea-list-leases

```bash
% kea-list-leases.py
DHCPv4 leases: 6
IP Address | Hostname     | HW Addr      | Client-ID       | Subnet ID | lifetime | expire
192.0.2.80 | phone        | 00:02:13:55:5e:23 |               | 1         | 14400    | 2020-11-18T14:33:32+01:00
192.0.2.120| linux-fedora | 3c:09:14:7a:6a:67 | 01:3c:09:14:7a:6a:67 | 1         | 14400    | 2020-11-18T13:24:08+01:00
192.0.2.121|             | 80:47:23:e6:38:32 |               | 1         | 14400    | 2020-11-18T14:48:28+01:00
192.0.2.242| nas          | 00:12:47:30:c4:de | 01:00:12:47:30:b4:de | 1         | 14400    | 2020-11-18T14:47:31+01:00
```
Process Monitoring - keactrl

• on the local machine, the command keactrl can be used to check the status of the Kea processes

$ keactrl status
DHCPv4 server: active
DHCPv6 server: inactive
DHCP DDNS: active
Control Agent: active
Netconf agent: inactive
Kea configuration file: /usr/local/etc/kea/kea.conf
Kea DHCPv4 configuration file: /usr/local/etc/kea/kea-dhcp4.conf
Kea DHCPv6 configuration file: /usr/local/etc/kea/kea-dhcp6.conf
Kea DHCP DDNS configuration file: /usr/local/etc/kea/kea-dhcp-ddns.conf
Kea Control Agent configuration file: /usr/local/etc/kea/kea-ctrl-agent.conf
Kea Netconf configuration file: /usr/local/etc/kea/kea-netconf.conf
keactrl configuration file: /usr/local/etc/kea/keactrl.conf
Process Monitoring - systemd

On a Linux machine with systemd, the status of the Kea processes can be read from the systemd process

```systemctl status kea-dhcp6
● kea-dhcp6.service - Kea DHCPv6 Service
   Loaded: loaded (/etc/systemd/system/kea-dhcp6.service; enabled; vendor preset: disabled)
   Active: active (running) since Thu 2020-11-12 22:50:14 CET; 1 day 10h ago
   Docs: man:kea-dhcp6(8)
   Main PID: 244200 (kea-dhcp6)
   Tasks: 1 (limit: 11784)
   Memory: 5.6M
   CPU: 22.572s
   CGroup: /system.slice/kea-dhcp6.service
   └─244200 /opt/kea/sbin/kea-dhcp6 -c /opt/kea/etc/kea/kea-dhcp6.conf

Process Monitoring via Systemd API

- systemd exposes the state of managed services via the DBUS API
- a monitoring system can read the DBUS API information
- Example: Monitoring systemd services in realtime with Chronograf
- Example: Prometheus exporter for systemd services
  https://github.com/povilasv/systemd_exporter
Monitoring via Kea API

- Kea exposes a REST/JSON API
- This API can be used to monitor the health and function of the Kea services (independent from Stork)
- Python Kea exporter for Prometheus
  https://pypi.org/project/kea-exporter/
- Source code of the Prometheus Kea exporter:
  https://github.com/mweinelt/kea-exporter
DHCP Function Monitoring

• dhcping is a simple tool to test if a DHCP server responds to DHCP requests and returns a lease
  • it requests a lease (DHCPREQUEST) or DHCP option information (DHCPINFORM) from a DHCP Server
  • after obtaining a lease, it will release the lease immediately
• Original Homepage:
  http://www.mavetju.org/unix/general.php
• Updated source:
  https://github.com/nean-and-i/dhcping
DHCping

```
% sudo ./dhcping -v -s 192.0.2.1 -h 01:02:03:04:05:05 -c 192.0.2.145

DHCP REQUEST
packet 250 bytes

nop: 1
htype: 1
hlen: 6
hops: 0
xid: ef0aaf5f
secs: 0
flags: 0
ciaddr: 192.0.2.145
yiaddr: 0.0.0.0
siaddr: 0.0.0.0
giaddr: 0.0.0.0
chaddr: 01:02:03:04:05:05
sname:
fname:

option 53 DHCP message type
 DHCP message type: 3 (DHCPREQUEST)
option 50 Request IP address
 Requested IP address: 192.0.2.145
```
DHCping

Got answer from: 192.0.2.1
packet 300 bytes

nop: 2
htype: 1
hlen: 6
hops: 0
xid: ef0aaf5f
secs: 0
flags: 7f80
.ciaddr: no entry found
.yiaddr: 0.0.0.0
.siaddr: 0.0.0.0
.giaddr: 0.0.0.0
.chaddr: 01:02:03:04:05:05
.sname:
.fname:
option 53 DHCP message type
  DHCP message type: 6 (DHCPNAK)
option 54 DHCP Server identifier
  Server identifier: 192.0.2.1
option 56 Message
DHCPRELEASE
packet 250 bytes

nop: 1
htype: 1
hlen: 6
hops: 0
xid: ef0aaf5f
secs: 0
flags: 0
ciaddr: 192.0.2.145
yiaddr: 0.0.0.0
siaddr: 0.0.0.0
giaddr: 0.0.0.0
chaddr: 01:02:03:04:05:05
sname: 
fname: 

option 53 DHCP message type
  DHCP message type: 7 (DHCPRELEASE)
option 54 DHCP Server identifier
  Server identifier: 192.0.2.1
DHCPtest

• another DHCP test tool

• written in D

• Source:

  https://github.com/CyberShadow/dhcptest
Monitoring for Pool depletion

• Performance suffers at very high pool utilization, because Kea is checking every address in order to see if it is available

• If an DHCP pool runs full, there is a risk that DHCP clients will not get an IP address lease and cannot join the network
How to deal with pool depletion

• if you encounter address pool depletion, check for the reasons
  • lease time too high for the number of DHCP clients in the network
  • machines are not releasing their lease on shutdown
  • malicious/buggy DHCP client software
Countermeasures to address pool depletion

• configure the Microsoft DHCP clients to release their leases on shutdown
  • can be done via DHCP option:
    https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dhcpe/4cde5ceb-4fc1-4f9a-82e9-13f6b38d930c
  • useful in public places where clients are not coming back
• consider switching to IPv6
  • make the pool as large as the current IPv4 Internet ;)

All content © 2020 Internet Systems Consortium, Inc.
Logging
Kea logging configuration

• All Kea services provide flexible logging:

• Log output can be written to one or more targets
  • to syslog
  • to a file
  • to stdout or stderr
Kea logging configuration

• Example: Logging to stdout and into a file

```json
"loggers": [{
 "name": "kea-dhcp4",
 "output_options": [
 {
 "output": "stdout",
 "pattern": "%-5p %m\n"
 },
 {
 "output": "/var/log/kea/kea-dhcp4.log",
 "maxsize": 1048576,
 "maxver": 10
 }
],
 "severity": "INFO",
 "debuglevel": 0
}
[...]
```
Kea Logger

• The Kea Log-Messages are sent from different logging modules
  • the logging modules create a logging hierarchy
    • The Root-Logger is named after the Kea service process
    • Below the Root-Logger are one or more logging modules that can be used to sent specific logging information to other log-targets, or change other logging parameters such as the severity
  • a list of Loggers supported by Kea servers and hook-libraries can be found in the Kea documentation
  https://kea.readthedocs.io/en/latest/arm/logging.html#the-name-string-logger
Kea Logger

- The name of the logging module that created a log message can be found in the log output (when using the default log pattern for files)
Logging to syslog

• Using the output parameter of syslog will sent the log messages of the chosen logger to the syslog daemon

• If a different service name should be used for the syslog messages, the service name can be specified in the format syslog:name

```json
[...]
 "loggers": [{
 "name": "kea-dhcp4",
 "output_options": [
 { "output": "syslog:dhcp4" }
],
 "severity": "WARN", "debuglevel": 0
 }]
[...]
```
Logging to a file

• When logging to a file, the parameter output specifies the file name.
  • File rollover can be specified with the `maxsize` (size of log-file in bytes) and `maxver` (number of log-file generations).
Logging Message Format

• The content of the log messages can be controlled with the pattern option

• The pattern used for each message is described by a string containing one or more format components as part of a text string

• In addition to the components the string may contain any other arbitrary text you find useful.

• The Log4Cplus documentation provides information on the pattern format string: https://log4cplus.sourceforge.io/
Logging Message Format

• Example: the pattern definition below ...

```json
{
 "output": "....",
 "pattern": "%D{%Y-%m-%d %H:%M:%S.%q} %-5p [%c/%i.%t] %m
",
}

• ... will create a log entry similar to this one:

Kea and Systemd Journal

• when a Kea service is running under control of systemd, the logging output written to stdout will be stored in the systemd journal

```json
[...]
"loggers": [{
  "name": "kea-dhcp4",
  "output_options": [
    {
      "output": "stdout",
      "pattern": "%-5p %m\n"
    }
  ],
  "severity": "INFO",
  "debuglevel": 0
}]
[...]
```
Kea and Systemd Journal

- Systemd-Journal entries can be queried with a filter language
 - easier than filtering through log files (if you don't know awk and perl)
 - systemd-journald data can be sent via an encrypted and authenticated connection to a central systemd-journald log host
- see the journalctl documentation for details

```bash
# journalctl --since today -u kea-dhcp4 --grep DHCP4_LEASE_ADVERT
-- Logs begin at Fri 2020-09-18 11:20:45 CEST, end at Sat 2020-11-14 09:24:50 CET. --
Nov 14 00:00:00 home01 kea-dhcp4[244218]: INFO DHCP4LEASE_ADVERT [hwtype=1 00:0d:93:29:2d:30], cid=[01:00:0d:93:29:2d:30], tid=0x7fa7d9468: lease 192.0.2.114 will be advertised
Nov 14 00:00:04 home01 kea-dhcp4[244218]: INFO DHCP4LEASE_ADVERT [hwtype=1 00:0d:93:29:2d:30], cid=[01:00:0d:93:29:2d:30], tid=0x7fa990db: lease 192.0.2.114 will be advertised
Nov 14 00:05:13 home01 kea-dhcp4[244218]: INFO DHCP4LEASE_ADVERT [hwtype=1 2e:78:71:ca:da:26], cid=[no info], tid=0x8ddd0a71: lease 192.0.2.115 will be advertised
Nov 14 02:15:06 home01 kea-dhcp4[244218]: INFO DHCP4LEASE_ADVERT [hwtype=1 14:c2:13:ed:ba:fb], cid=[01:14:c2:13:ed:ba:fb], tid=0xda0e88bc: lease 192.0.2.23 will be advertised
Nov 14 04:16:09 home01 kea-dhcp4[244218]: INFO DHCP4LEASE_ADVERT [hwtype=1 14:c2:13:ed:ba:fb], cid=[01:14:c2:13:ed:ba:fb], tid=0xda0e88be: lease 192.0.2.23 will be advertised
Nov 14 06:01:03 home01 kea-dhcp4[244218]: INFO DHCP4LEASE_ADVERT [hwtype=1 14:c2:13:ed:ba:fb], cid=[01:14:c2:13:ed:ba:fb], tid=0xda0e88c0: lease 192.0.2.23 will be advertised
Nov 14 08:04:24 home01 kea-dhcp4[244218]: INFO DHCP4LEASE_ADVERT [hwtype=1 14:c2:13:ed:ba:fb], cid=[01:14:c2:13:ed:ba:fb], tid=0xda0e88c3: lease 192.0.2.23 will be advertised
```
Kea API authorization logging

• Starting with Kea 1.9.1, it is possible to restrict the Kea API commands to authorized users
• the authorization information will be logged with the kea-ctrl-agent.http logger:

```bash
# ./kea-ctrl-agent -c simple.json
20.10.15 14:05:16.550 INFO [kea-ctrl-agent.http/174909] HTTP_CLIENT_REQUEST_AUTHORIZED received HTTP request authorized for 'admin'
20.10.15 14:05:16.550 INFO [kea-ctrl-agent.commands/174909] COMMAND_RECEIVED Received command 'list-commands'
```
Debug-Logging

• Quick option: start KEA DHCP4 in debug mode from the command line. This will automatically enable the highest debugging level.

• On a busy server, this will create too much debug information (see next slide for an alternative)

```
[kea-server]# systemctl stop kea-dhcp4
[kea-server]# kea-dhcp4 -d -c /etc/kea/kea-dhcp4.conf
```
Debug-Logging

• Alternative: enable debug logging on a specific logger only

```
"loggers": [{
  "name": "kea-dhcp4",
  "output_options": [
    { "output": "syslog:dhcp4" }
  ],
  "severity": "WARN", "debuglevel": 0
},
{ "name": "kea-dhcp4.flex-id-hooks",
  "output_options": [
    { "output": "/var/log/kea/kea-dhcp4-flex-id.log"
  ],
  "severity": "DEBUG",
  "debuglevel": 55
} ]
[...]```
Performance testing
Kea perfdhcp tool

• The Kea development team has published the performance measurement tool (called \texttt{perfdhcp}) that is used to do DHCP performance testing for Kea

• Documentation:
  

• Usage examples:
  
  \url{https://users.isc.org/~tomasz/perfdhcp/dhcp-perf-guide.html#perfdhcp-commandline-examples}
Next Webinars

• 2nd December - Kea DHCP - Migrating to Kea from ISC DHCP
Resources

• Video: Stork Management Dashboard for Kea DHCP
  https://www.youtube.com/watch?v=5aF9NB1KhqQ
• Stork Documentation
  https://kea.readthedocs.io/projects/Stork
• Stork Project Page
  https://gitlab.isc.org/isc--projects/stork
• Stork mailing list
  https://lists.isc.org/mailman/listinfo/stork--users
Questions and Answers