

HEADLINE: This type of random name query traffic is now well-known to most operators
of large Recursive DNS Servers

In early 2014 ISC and other DNS server providers started to receive many reports of problems
encountered by DNS Recursive Servers (though the earliest known report was in 2009).

Initially believed to be an attack on Recursive Servers, but later understood to be targeting
Authoritative Servers (so became known as ‘collateral damage’ or ‘water torture’)

The signature of this attack traffic is a series of client queries, for a domain that exists, but where
the name in the domain does not exist.
The non-existent names are all different (or if they repeat, they do so only as a client timeout and
retry, or after the original series of names is exhausted and repeats).
Often the ‘www’ label is included between the main domain name labels and the random ‘attack’
label.
Analysis of the names by other DNS industry researchers suggests that they’re generated by an
algorithm, so while they appear to be random to humans, they’re actually not truly random from a
mathematical cryptographic perspective. So they’re only ‘PSEUDO-RANDOM’.
(But it’s their uniqueness rather than their randomness that is significant for causing the most
harm to their targets.)
** The expected response to these queries is NXDOMAIN

** This is because, whilst the domain exists, the name within that domain does not

HEADLINE: There are many sources of this traffic, and the sophistication of the attack
continues to evolve…

EarlyDDoS initiators made liberal use of DDoS for hire services that took advantage of lists of
open IPv4 resolvers (readily available) as a means of spreading the source of the client queries to
make them harder to detect and block.

Much of this query traffic found its way to ISP resolvers, by means of insecure home gateways
that were acting as open resolvers by forwarding queries received on their Internet-facing IP
address, to the network provider’s recursive DNS server(s). Typically rach client sends only a
few queries – making it unrealistic to identify specific sources of badness in order to block them.
Other open-resolver scenarios include running resolvers that are themselves open or providing
forwarding services to business customers who are running open resolvers on their own sites.

(Note though: if you have clients that have broken CPE devices, attack queries *to* those devices
will be traversing your network to reach them – you could, quite reasonably in most cases, block
queries *TO* port 53 on your addresses you assign to your clients)

New and more sophisticated approaches are now being identified, such as compromised clients
or devices (e.g. Internet webcams) running malware.

With the more recent approaches, the query load per client is much much higher, and the
attackers often seek to obscure the source by spoofing the source address to be one (or several)
that are still within the client’s subnet.

5"

HEADLINE: Why this is a problem for Recursive Server Operators…. (the
next series of slides explains why)

6"

HEADLINE: One client query and one NXDOMAIN response is a normal
occurrence.

On it’s own, this is a simple query, and the response is NXDOMAIN

What could go wrong?

7"

HEADLINE: Many unique client queries, each requiring full recursion to
return an NXDOMAIN is abnormal

But it’s not just one client query – it’s many, and they’re all unique (apart from
retries).

8"

HEADLINE: Typically, under this onslaught, the authoritative servers will
become unresponsive

Since they’re all unique, there’s nothing in cache – each one has to be answered
by the resolver sending the query to the authoritative servers for the domain
Eventually the target is overwhelmed (it is almost certainly be stormed by client
queries from all over the Internet)
OR
The target implements traffic rate limiting – and since our resolver in the example
above is the source of a lot of queries… (next slide…)

9"

HEADLINE: It is a problem for a Recursive Server when Authoritative
servers stop responding to them

No answers come back – and the Resolver is left hanging around waiting for
many responses to queries that it has sent out.

10"

HEADLINE: Recursive Servers only have finite resources with which to
keep track of pending queries

This is the point where recursive servers start to feel the heat. When handling a
client query that can’t be answered immediately from cache or from an
authoritative zone that it serves, a recursive server has to maintain a ‘context’ for
the client – that is, what has been asked, who asked it etc.. while it goes off to
get the answer from the Authoritative Servers on the Internet.
The BIND configuration option ‘recursive-clients’ provides a maximum of how
many of these contexts named can store, before it has to stop accepting new
recursive client queries for resolving.
This controls the use of BIND’s resources – directly (the number of clients that
are allowed to be ‘waiting for a response’ at any moment in time), and indirectly
(the other resources that named is using for doing this onward resolution, such
as tracking the onward queries themselves and open sockets etcetera).
Two things can start happening at this point:
1)  New (legitimate) client queries can’t be accepted, because the limit has been

reached (dropped or SERVFAILed)
2)  New client queries are accepted (because the limit is set very high), but still

fail, because other resources are exhausted.

11"

HEADLINE: How do you know if your servers are suffering from this type of
attack?

HEADLINE: It is A Big Clue when you see your servers sending back
SERVFAIL responses to clients that should resolve OK.

The first symptom that is usually noted and investigated is an increase in
SERVFAIL responses to clients – the legitimate ones.
After this, it depends what else is being monitored, but usually we hear about:
-  An increase in inbound client queries (due to the attack traffic)
-  Sometimes an increase in NXDOMAIN responses (replies to the attack

queries)
-  Resolution delays and failures (because the recursive server’s resources are

exhausted)
-  Increased memory consumption by named (twofold – there may be more

cached NXDOMAIN pseudo records in cache – remember each DDoS query is
unique; also, the increase in resources handling the backlog of recursive client
contexts and other structures requires named to use more memory)

-  Sometimes the additional traffic translates to firewall problems too.

HEADLINE: A big Recursive Clients backlog is A Bad Thing

Here’s an early example of a server failing under attack (the attack commenced
from earlier than the monitoring was initiated).
In the top graph we’re seeing the volume of SERVFAIL responses sent back to
clients (versus the ones received from authoritative servers and passed on). In
other words, these are LOCALLY GENERATED ‘I can’t resolve this’ responses.
This is a huge SERVFAIL rate – and it’s much higher than just the increase in
DDoS traffic – what’s happening is that legitimate client queries are getting
SERVFAIL responses instead of answers.
In the bottom graph the number of outstanding recursive client queries (recursive
client contexts is being tracked in parallel. The limit is 10,000 and while the
attack is ongoing, is hitting around 6000. It’s this backlog which is both evidence
of a serious problem, as well as a significant contributing factor to the failures of
good client queries.
At the point where the onslaught paused briefly and the backlog dropped below
2000, suddenly the SERVFAIL rate plummets too (and at this time, named
should only be sending back SERVFAIL responses to clients where the query
really is unresolvable).

HEADLINE: Make sure that you are alerted to unusual increases in resource
consumption and then look more closely at what is going on.

From ‘rndc status’, the first number is the actual backlog of recursive client
contexts. The other two numbers are the soft limit (calculated for you by named)
and the hard limit (you configure this with option recursive-clients).
If you hit the hard limit, named just drops the client; if you hit the soft limit, named
will still accept the new client query, but it will at the same time stop processing
and send back a SERVFAIL to the oldest outstanding client query it has in its
backlog.
The rndc recursing command tells named to dump ‘all client queries in progress’
to a file – by default this is named.recursing (in named’s default directory). With
the output from rndc recursing, you can dig further. You’ll be able to see:
-  Which clients are sending them
-  What names are being queried
Looking at the open sockets can sometimes also be useful if the pattern of
names in the query backlog is too diverse. Perhaps all of those diverse domains
are hosted on the same small number of authoritative servers, none of whom are
responding? Check your named server logging – are you hitting any resource
limits?

HEADLINE: So.. what can you do?

HEADLINE: What do you want to achieve?

HEADLINE: There are several wrong ways to respond to the situation…

Increasing e.g. recursive clients (BIND) or similar on other DNS server software
is not ultimately going to help
Don’t set recursive-clients larger than 3500 – the problem will expand to fill the
space made available for it…
(Aside: DO set recursive clients larger than 1000 on older versions of BIND)
The resources you’re consuming are being used (in the majority) for clients
whose queries are anyway doomed to fail
Management of the increased resources has its own overhead
Far better to tackle the root cause of the problem!
If you have many many clients each only contributing a handful of queries to the
problem – realistically you can’t block them
You might (if you have just a small number of clients sending the majority of
‘problem’ queries) be able to identify and block the source.

HEADLINE: This is actually pretty good First Aid – but it’s responding to
the injury, not preventing it.

This is usually the first thing that DNS admins try.
The logic goes something like this:
-  These queries are for non-existent names
-  The authoritative servers (IF they were responding), would send back an

NXDOMAIN anyway
-  Let’s cut out the delays and send back NXDOMAIN immediately
-  (…or just drop the queries – can do this with DNS-RPZ)

It’s good – but it’s far from perfect.
It’s manual intervention
It’s intervention AFTER the problem has impacted your service
At some point you have to decide whether or not it’s same to remove the
mitigation and allow legitimate queries through to the non-responding servers
once more.

HEADLINE: This is more sophisticated than before, but it’s still application
of First Aid to an injury that has already occurred.

The next step is usually the ‘but we could automate this!’ idea. There are two
main techniques:
a)  Monitoring and scripted inspection of the recursive clients backlog to identify

the ‘patterns’ and add local zones or DNS-RPZ rules to NXDOMAIN or drop
the ‘problem’ client queries

b)  Subscription to a service provider that does this for you by means of a slaved
response policy zone.

Note that if you’re using DNS-RPZ, either with your own Response Policy Zone,
or using a 3rd party feed, you will need to have a version of DNS-RPZ that
includes the option to filter on the query name and return an answer BEFORE
doing recursion – that is, querying other authoritative servers. It doesn’t help to
filter after querying the authoritative servers - because that’s where named runs
into difficulties when those servers fail to respond.
The option you need is qname-wait-recurse no;
(It’s a little more complex than that, as the other rules in the policy zone may still
override the suppression of recursion (because recursion would be needed in
order for those rules to be executed on the results) – but more details can be

HEADLINE: We want to prevent the injury to the Recursive Server before it
happens instead of waiting for the non-responding servers to timeout and
cause problems.

We put our thinking caps on – and realized that the best place to identify that
there was a problem, as well as what was causing it, was in BIND itself. And
where better also, to apply the appropriate mitigations by automatically rate-
limiting the recursive client queries that were causing the problem.

In most instances, once the authoritative servers have stopped responding, we
will be sending back a SERVFAIL, but only after waiting for the timeout. Since it
is the use of server resources while waiting that causes problems, we can
choose not to wait, and to send back the SERVFAIL immediately instead when
we detect that that a problem is starting to happen.

So that’s what we did – with extensive testing along the way, both in-house and
in production environments offered (to mutual benefit) by some of our support
customers who were having real problems.

HEADLINE: The rate-limiting works on the basis of monitoring outstanding
fetches (this is not the same as recursive clients)

These new throttles, or client query rate-limiters work on the basis of monitoring
and responding to outstanding ‘fetches’. What’s a ‘fetch’?

Think of ‘fetches’ as being the the queries that named has to make – possibly
several of them per client query – in order to get the answers into cache so that
the client query can be given a response

The throttles are applied when there are too many outstanding fetches
-  For the same zone
-  To the same authoritative server

This first throttle is the one we see as being the main defense mechanism
because it is:
-  self-tuning (based on the rate of responses/timeouts)
-  works for all outstanding fetches to a non-responding server, even if the

HEADLINE: fetches-per-server should be your primary filter in most cases
because it is both self-tuning, and applies to all queries to a non-
responding server

The way this works is that you configure the initial threshold for the backlog of
outstanding fetches to any one server in your named.conf file. If the threshold is
reached, then named will start rate-limiting fetches to that server (the client
receives SERVFAIL if rate-limited)

While rate-limiting, named monitors the responsiveness of the server, and tunes
down the quota, depending on the ratio of fetches that timeout, as opposed to
those that receive a successful response. This means that if/when the server
starts responding again, the quota is automatically scaled upwards again (and of
course, what will also be happening at the same time, is that the server *is*
responding, therefore the backlog is anyway reduced, so recovery is going to be
very fast.

The scaling algorithm is documented in the Administrator Reference Manual.

HEADLINE: fetches-per-zone is going to be at its most effective when there
are many servers for a zone

fetches-per-zone works best when fetches-per-server threshold isn’t being
triggered because there are too many of them – but note that it is a static
threshold – and one that you would want to set higher or lower depending on the
overall volume of queries a server is normally handling.

We recommend 200 as a good starting default for most servers.

And now, a confession! In the experimental versions of fetches-per-zone, we
intended for it to SERVFAIL the clients but we actually made a coding error
and were dropping the client queries instead. This turned out to be an
unexpectedly fortunate mistake, as you’ll see later when looking at graphic
representations of these tuning options in production environments - because it
enables us to distinguish between the two of them by virtue of the effect they are
having.

It also sparked a discussion of what it’s best to do when rate-limiting client

HEADLINE: Several techniques available – the first two are reactive, but
Recursive Client Rate limiting is proactive and virtually automatic!

So apart from dealing with the sources of the queries (which won’t necessarily
solve all your problems anyway), what can you do?

It turns out that there’s quite a lot you can do already – and BIND’s new recursive
client rate limiting will make it even easier to deal with this problem!

HEADLINE: Nice new ideas, but do they actually work in practice?

Well… yes they do!

HEADLINE: fetches-per-zone is limiting the impact of the problem
successfully – the peaks of attack traffic don’t affect the normal response
rates to good clients

This was the first piece of graphical feedback we received, and we were very
excited to see it.

In the graph, the green line is tracking inbound queries (over IPv4) and the
sea blue line is tracking responses sent back. There is a peak of queries and
responses from the start of the day through to the late evening which then dies
off rapidly as the the users go to bed – all pretty normal.

But then in the small hours of the morning, (where the arrow is pointing),
abruptly the attack begins, and we see sharp peaks of DDoS queries that are
outside the normal range of expected query traffic for that time of day. fetches-
per-zone immediately kicks in, and the aqua blue line remains smooth, showing
that the attack queries are being dropped, while the genuine client queries are
being handled as normal.

HEADLINE: An increase in inbound queries with an initial peak in
NXDOMAIN responses is one of the signatures of a pseudo-random
subdomain attack.

This is another instance from the same production environment but tracking a
few more trends, and with some slightly different scaling.

The TOP GRAPH is tracking the same numbers we saw just before. The
BOTTOM, but run over the same time period, is tracking the different response
types being returned – what we’re looking at particularly is the NXDOMAIN
responses (shown in the dark blue line).

This slide is interesting because it demonstrates that initially in the attack, there
was a small peak in responses – these are NXDOMAIN responses to the unique
attack queries that the victim servers have returned before they’re overwhelmed
and on the top graph, and the aqua line, you can just about make out the small
corresponding peak in responses, before the authoritative servers have given up
(or implemented Response Rate Limiting against us.

HEADLINE: fetches-per-server still sends back the SERVFAIL to the client
that it would receive anyway, but without consuming server resources

This monitoring graph is from a different production site (who wished to remain
anonymous).

They took a different approach to monitoring – in this case sampling the
backlog of recursive client contexts at intervals, and mapping it against
SERVFAIL responses being sent to clients. The reason for tracking the
recursive clients backlog is that it’s one of the best clues that you have that a
recursive server is likely to be running into resource exhaustion problems.

This shows the point at which fetches-per-server was deployed. The
SERVFAIL responses to the clients continue at a similar rate as before – they
would, in any case have been SERVFAIL response to the clients when the
fetches to the non-responding authoritative servers timed out, but there’s no
longer a significant backlog of waiting request consuming server resources
because the majority of the SERVFAILs are returned immediately (per fetches-
per-server) instead of waiting for timeout.

HEADLINE: Both fetches-per-zone and fetches-per-server have a role to
play

What can happen if you deploy both fetches-per-zone and fetches-per-server?
Here are two different views of the same time period.
At the start of the period of the attack, it is fetches-per-zone that has been
triggered. This is clearly identified by the gap between inbound queries and
outbound responses in the lower graph.
At the same time, (and consistent with fetches-per-zone being in effect) the
recursive client queries backlog (red line, top graph) remains constant. That’s
because this is a static threshold.
You also see a very low rate of SERVFAILs at this point too – that’s because of
the accidental bug where client queries hitting the fetches-per-zone limit are
being dropped versus being SERVFAILed.
Later on (to the right of both graphs) we are seeing the impact of fetches-per-
server in the peaks of SERVFAILs (but without corresponding peaks in Recursive
Clients – and as confirmed by the logging).
If you have both deployed, then fetches-per-zone is checked first, but it’s possible
that queries that are not spilled by fetches-per-zone will subsequently be limited

HEADLINE: Use either or both (we think that deploying both is best).

HEADLINE: Most end-users will be happily unaware of what is going on.

But what about our DNS clients?

•  We’ve demonstrated the protection provided to recursive servers by deploying

these measures
•  We know that by rate limiting the client queries, we’re also helping the wider

cause by limiting the attack traffic hitting the authoritative servers

Because our server is not starved of resources, it should handle most client
queries as usual, but with two exceptions (noted on the slide).

HEADLINE: You can choose whether to DROP or to send back SERVFAIL
for each of fetches-per-zone and fetches-per-server

So – what IS the right response when rate-limiting client queries?

Fetches-per-zone and fetches-per-server can either drop or send back
SERVFAIL. Either would be OK for ordinary clients, but it would be bad to fail to
respond to another server that is forwarding, because effectively you’d be
passing along to it, the bad impact of the DDoS.

SERVFAIL is the ‘correct’ response per the DNS protocol – but some
administrators may prefer ‘drop’ as the client behaviour is going to be similar (will
likely retry the query) anyway, so why send a response that will just be ignored,
and which is using up your network bandwidth.

If you’re using a local-authoritative-zone technique, then you’ll be sending back
NXDOMAIN to all clients (which is the answer the DDoS queries should be
receiving anyway) – but unless you also have the legitimate answers for clients in
your local zone (very unlikely!), you’ll be sending back NXDOMAIN answers for

HEADLINE: If you need more information, here is where to find it

So in summary:

We’ve covered the attack traffic; how to recognize it and what impact it can have
on recursive servers.

We’ve suggested how you can mitigate the attack impact by using local
authoritative zones and DNS-RPZ, either manually or via automated scripts or
dynamic feeds.

And then finally, we’ve introduced the new features of BIND that are designed to
deal directly with this problem from within named, either instead of, or
supplementing mitigation techniques that you already have in place.

Any questions?
If"you’ve"new"ideas"that"you’d"like"us"to"consider,"please"submit"them"to"bindA
suggest@isc.org"(we"do"have"several"of"our"own"already"that"we’re"working"on)."

