
DNS Response Rate
Limiting!

LISA14!
13 November 2014!

About the Presenter!
Eddy Winstead!
•  Senior Systems Engineer, Internet Systems Consortium!
•  Sales Engineer, Configuration Inspector, Consultant !
•  BIND & ISC DHCP Trainer!
•  20+ years of DNS, DHCP and sysadmin experience!
!
!

ISC at a Glance!
• BIND	 DNS	 server	
• ISC	 DHCP	 client,	 relay,	 server	
• Kea	 new	 DHCP	 server	

Open	 Source	

•  F-‐Root,	 one	 of	 13	 root	 server	 systems	
world-‐wide	

•  Hosted@,	 public-‐benefit	 hosIng	
Network	 Services	

• SubscripIon	 Support	 Services	
• BIND	 and	 DHCP	

• Training	

Commercial	
Services	

3!

State of the Net - Cyber Attacks!

•  Cyber attacks against US businesses increased 42%
compared to the previous year !

•  Over 50% of the significant online operations
experience five or more 2-6 hour DDoS attacks per
month!

•  DDoS attacks increased 20% in Q2, 2013, and have
risen across the board in size, strength, and duration !

©	 2014	 www.isc.org	 4!

Distributed Denial  
of Service Attack!

•  DDoS attacks are used by malicious parties to force a
computer resource—a website, network, or application
—to stop responding to legitimate users.!

•  Motives!
-  Ideology/Vendetta!
-  Politics!
-  Competition!
-  Cloaking Criminal Activity!
-  Extortion!
-  Because we can…!

•  Examples!
-  Smurf Attack!
-  (S)SYN flood!
-  Reflected DoS!

©	 2014	 www.isc.org	 5!

Reflected DoS Attacks!
•  rDoS involves sending forged requests of some type

to a very large number of computers that will reply to
the requests 
 
Two steps are taken to conduct such an attack: 
!
1.  Attacker modifies IP packet data through Internet

Protocol address spoofing  
!

2.  Attacker searches for responses that are several
times bigger than the request!

©	 2013	 www.isc.org	 6!

DDoS and DNS!
•  DNS is easily used for DDoS: 
!
–  DNS lacks any source validation features 
!

–  Most ISPs don’t check the source address of
packets they send  
!

–  Small DNS queries can generate large responses!
•  DNS Amplification Attacks!

©	 2014	 www.isc.org	 7!

Normal Traffic!

©	 2014	 www.isc.org	 8!

rDoS Attack!

©	 2014	 www.isc.org	 9!

Accidental(?) DNS Attacks!

Poor Network Hygiene!
!

•  Non-caching name servers!
•  Too frequent flushing!
•  Open recursive servers (some ~25-30

Million, in fact!)!
!

Cost of DDoS Attacks!

•  Revenue loss and lost sales!
•  Operational expenses related to downtime!
•  Decreased employee productivity!
•  Impact on customer experience!
•  Brand and reputation damage!
•  Breach of contract and violation of service level

agreements!

©	 2014	 www.isc.org	 11!

A SOLUTION ON THE
AUTHORITATIVE SIDE OF
THINGS…!

©	 2014	 www.isc.org	 12!

How did RRL come about?!

•  ISC signed our zones
in 2006!

•  Observed queries that
were occurring too
frequently from the
same IP!

•  Defensive strategy
sessions at ISC with
Paul Vixie led to RRL!

EDNS0	 query	 for	
isc.org	 of	 type	 ANY	
is	 36	 bytes	 long	
Response	 is	 3,576	
bytes	 long	

Response Rate Limiting!

•  An Enhancement to the DNS!
–  A mechanism for limiting the amount of unique

responses returned by a DNS server 
!

–  A mitigation tool for the problem of DNS
Amplification Attacks 
!

–  The only practical defense available for filtering in
the name server!
•  BIND 9.9.4 includes RRL as a key feature!

–  Available for download at https://www.isc.org/downloads/!

©	 2014	 www.isc.org	 14!

Benefits of RRL!
•  Improved efficiency and ability to deflect attacks!

–  Huge reductions in network traffic!
–  Huge reductions in server load!

•  Brand protection!
–  Servers are no longer seen as participating in abusive

network behavior. 
!

•  Smoother network traffic!
–  Impact on legitimate traffic has been minimal!
–  Significant drop in attack traffic!
–  No dropped DNS queries!

©	 2014	 www.isc.org	 15!

Boundaries of RRL!
•  At present, RRL implementation is recommended for

authoritative servers only.!

•  RRL cannot identify which source addresses are
forged and which are not. 
!

•  We can use the information from pattern analysis to
throttle responses!
–  Incoming queries are NOT throttled by RRL!

©	 2014	 www.isc.org	 16!

Use Case!
•  Symptom:!

–  ISP identifies a significant increase in the number of queries!
–  Attackers use ISP’s response query to amplify attack!
–  ISP’s DNS infrastructure contributes to the attack 
!

•  Solution:!
–  Network operator at ISP enables RRL!
–  Defines parameters to mitigate queries and response time  
!

•  Result:!
–  ISP experiences huge reduction in traffic!
–  Upholds positive corporate image; doesn’t contribute to the attack!

©	 2014	 www.isc.org	 17!

ISC RRL DEPLOYMENT
EXPERIENCE!

RRL on ISC’s network!

•  Deployed on isc.org and SNS in Spring
of 2012!

•  Deployed on F-root in Summer of 2013!

ISC F-Root!

ISC F-Root!

ISC F-Root!

ENABLING & CONFIGURING
RRL IN BIND!

!options {!
! !directory “/var/named”;!
! !rate-limit {!
! ! !responses-per-second 5;!
!# ! !log-only yes;!
! !};!
!};!

Enabling RRL!
•  RRL is available in ISC’s BIND 9.9.4 Software!

–  Download: https://www.isc.org/downloads/!
–  RRL support must be enabled with –enable-rrl prior to compiling!
–  Documentation: https://kb.isc.org/article/AA-01000!

!

©	 2014	 www.isc.org	 24!

K.I.S.S. (ISC’s RRL deployment
philosophy)!

•  SLIP!
–  How many UDP requests can be answered with a

truncated response.!
–  Setting to “2” means every other query gets a short

answer!
(much more on this topic later)!

•  Window!
–  1 to 3600 second timeframe for defining identical

response threshold!
–  Highly variable based on conditions!

•  Responses-per-second!
–  How many responses per second for identical query

from a single subnet!
–  Highly variable based on conditions!

rate-limit {!
!slip 2; !// Every other response truncated!
!window 15; !// Seconds to bucket!
!responses-per-second 5; !// # of good responses per prefix-length/sec!
!!

rate-limit {!
!slip 2; !// Every other response truncated!
!window 15; !// Seconds to bucket!
!responses-per-second 5; !// # of good responses per prefix-length/sec!
!referrals-per-second 5; !// referral responses!
!nodata-per-second 5; ! !// nodata responses!
!nxdomains-per-second 5; !// nxdomain responses!
!errors-per-second 5; ! !// error responses!
!all-per-second 20; ! !// When we drop all!
!!

rate-limit {!
!slip 2; !// Every other response truncated!
!window 15; !// Seconds to bucket!
!responses-per-second 5;// # of good responses per prefix-length/sec!
!referrals-per-second 5; !// referral responses!
!nodata-per-second 5; !// nodata responses!
!nxdomains-per-second 5; !// nxdomain responses!
!errors-per-second 5; !// error responses!
!all-per-second 20; !// When we drop all!
!!

!log-only no; !// Debugging mode!
!!

rate-limit {!
!slip 2; !// Every other response truncated!
!window 15; !// Seconds to bucket!
!responses-per-second 5;// # of good responses per prefix-length/sec!
!referrals-per-second 5; !// referral responses!
!nodata-per-second 5; !// nodata responses!
!nxdomains-per-second 5; !// nxdomain responses!
!errors-per-second 5; !// error responses!
!all-per-second 20; !// When we drop all!
!!
!log-only no; !// Debugging mode!
!qps-scale 250; !// x / query rate * per-second!
 !// = new drop limit!
!exempt-clients {127.0.0.1; 192.153.154.0/24;};!
!!

rate-limit {!
!slip 2; !// Every other response truncated!
!window 15; !// Seconds to bucket!
!responses-per-second 5;// # of good responses per prefix-length/sec!
!referrals-per-second 5; !// referral responses!
!nodata-per-second 5; !// nodata responses!
!nxdomains-per-second 5; !// nxdomain responses!
!errors-per-second 5; !// error responses!
!all-per-second 20; !// When we drop all!
!!
!log-only no; !// Debugging mode!
!qps-scale 250; !// x / 1000 * per-second!
 !// = new drop limit!
!exempt-clients { 127.0.0.1; 192.153.154.0/24; 192.160.238.0/24 !};!
!ipv4-prefix-length 24; !// Define the IPv4 block size!
!ipv6-prefix-length 56; !// Define the IPv6 block size!
!!
!!

rate-limit {!
!slip 2; !// Every other response truncated!
!window 15; !// Seconds to bucket!
!responses-per-second 5;// # of good responses per prefix-length/sec!
!referrals-per-second 5; !// referral responses!
!nodata-per-second 5; !// nodata responses!
!nxdomains-per-second 5; !// nxdomain responses!
!errors-per-second 5; !// error responses!
!all-per-second 20; !// When we drop all!
!!
!log-only no; !// Debugging mode!
!qps-scale 250; !// x / 1000 * per-second!
 !// = new drop limit!
!exempt-clients { 127.0.0.1; 192.153.154.0/24; 192.160.238.0/24 !};!
!ipv4-prefix-length 24; !// Define the IPv4 block size!
!ipv6-prefix-length 56; !// Define the IPv6 block size!
!!
!max-table-size 20000;!// 40 bytes * this number = max memory!
!min-table-size 500; !// pre-allocate to speed startup!
};!

The SLIP=1 vs SLIP=2 debate!

•  ANSSI (CVE-2013-5661) recommends
SLIP=1. Knot sets this as default.!

•  BIND & NSD defaults remain at SLIP=2!

Let’s talk about why…!

The SLIP=1 vs SLIP=2 debate!

•  The ANSSI (CVE-2013-5661) findings
indicate SLIP=2 lowers the time needed
for successful cache poisoning!

•  While an authoritative server is
suppressing responses, an attacker has
an increased window to send malicious
“responses” to a resolver!

•  The findings aren’t surprising or disputed,
but the recommendation (SLIP=1) is… !

Additional data for the SLIP debate!

•  The ANSSI tests weren’t just Kaminsky-
style attacks – but assumed only one
authoritative nameserver in play due to
SRTT trickery and/or Shulman
fragmentation attack. !

•  1 authoritative server, SLIP=2 lowered the
time to successful poisoning from “days” to
“hours”. ~16 hours at 100Mbit/sec.!

Additional data for the SLIP debate!

•  Well… we already have a solution for
cache poisoning!!

! ! ! ! ! !DNSSEC!

•  Of course, deployment remains a
challenge.!

Final thoughts on SLIP!

•  ISC decided to keep the default at SLIP=2
in BIND as we think this best provides
protection against the problem RRL was
designed to address.!

•  Your SLIP decision will be based on
finding the right balance of competing
security concerns in your environment.!

Use of Logfiles!

•  Initially use logging!
•  Use a separate logging channel to

segregate data from regular logs!
!

Log only “dry run” feature to view
behavior before going live with RRL!

-=-!
logging {!
!
 channel query-error_log {!
 file "log/query-error.log" versions 7 size 100M;!
 print-category yes;!
 print-severity yes;!
 print-time yes;!
 severity info;!
 };!
 category query-errors { query-error_log; };!
!
};!

Additional Considerations!

•  Window length – interrupt self-monitoring!
– Whitelist option ‘exempt clients’!

•  Not responding to legitimate queries!
!

RRL Classifier!
•  Expansion of RRL Basic!

–  RRL Basic filters on Destination Address of Response (source of
attack traffic is assumed to be forged, but provides address of
attack target)!

•  2014!
–  Name Requested (QNAME)– allows for whitelisting and supports

possible expansion to recursive use case!
 !
–  Size of the Response– limits amplification potential!

Additional RRL General
Information !!

•  A Quick Intro to RRL: https://kb.isc.org/
article/AA-01000/189/!

•  What is a DNS Amplification Attack:!
 https://kb.isc.org/article/AA-00897!

©	 2013	 www.isc.org	 41!

Additional RRL Advanced
Information !!

•  Response to SLIP issue!
– https://www.isc.org/blogs/cache-poisoning-

gets-a-second-wind-from-rrl-probably-not/!
•  Vixie Article on DNS Security!
– http://www.circleid.com/posts/

20130913_on_the_time_value_of_security_fe
atures_in_dns/!

WHAT ARE WE SEEING & DOING
ON THE RECURSIVE SIDE?!

What are we seeing on the
recursive side these days?!

•  ‘Collateral Damage’ Client DDoS traffic!
 <randomstring>.www.abc123.com 
 <anotherstring>.www.abc123.com 
  
The queries are unique and originate from a large range of
different client addresses. Typically, the servers for abc123.com
do not respond at all, or only sporadically to the recursive server
handling the client query. 
 
A flurry of queries will run for a day or two, then stop. The
domains are genuine, and the majority appear to be for online
commercial sites, often hosted in China. 
!

Problem statement!

•  Authoritative servers under attack are
non-responsive and tie up resolver
resources wanting for replies!

•  So far, the impact on recursive server
resources appears to be accidental -
primarily due to open resolvers.!

•  This is a wake-up call that we need to
better manage recursive resources!

Resolver impact!

Target	 of	 the	 DDOS	
Authorita1ve	 provider	 or	 their	

host	

ISP	
resolver	

Insecure	
Home	

gateway	

Ini1ator	 of	
DDoS	 traffic	

2.	 AWempt	 to	
resolve	 request	

1.	 Request	 for	 string.abc123.com	

3.	 Server	 is	
unresponsive	

Home	 user	 is	
probably	
oblivious	

WaiIng	 for	
response	 from	

D	

A

B	 C	

D	

4.	 Reply	 (NXDOMAIN	 or	 SERVFAIL)	

abc123.com	

Mitigation Approaches!
•  Traffic patterns impacting all recursive

servers (not just BIND)!
•  Mitigations suggested/introduced:!
– Network infrastructure/environment!
– Some generic to all DNS servers!
– Some specific to BIND (currently

experimental) but could be adopted by other
DNS server software manufacturers.!

Mitigation Approaches - 1!
•  Eliminate open resolvers!
–  Is your recursive server an open resolver?!
– Open client CPE devices!
– Small business users forwarding local open

caches to your servers!
•  Compromised/infected clients!
–  ‘hearsay’ evidence that these exist now!
– But it’s only a matter of time…!

Mitigation Approaches – 2!
•  Locally-created authoritative answers!
– Detect ‘bad’ domain names!
– Make recursive server temporarily

authoritative for the domain being used!
– Prevents valid queries (which wouldn’t

succeed anyway)!
– Problem of false-positives – might need white-

lists if using scripted detection!
– Need to undo the mitigation afterwards!

Mitigation Approaches – 3!
•  Response Policy Zones (DNS-RPZ)!
– Detect ‘bad’ domain names!
– Update RPZ zone to blacklist domains!
– Prevents valid queries (which wouldn’t

succeed anyway)!
– Problem of false-positives – might need white-

lists if using scripted detection!
– Need to undo the mitigation afterwards!

Experimental Approaches – 1!
•  Hold-down Timer (since writing, deprecated and

replaced with fetches-per-server)!
– One timer each per server per zone!
– Count how many consecutive times a server fails

to respond (holddown-threshold)!
– When threshold reached, don’t send queries to

that server for holddown-timer seconds (doesn’t
abort any currently waiting queries)!

– Quick check – if next ‘response’ from server is a
timeout, then hold-down immediately!

– Helpful, but less effective with intermittent
outages.!

Experimental Approaches – 2!
•  Rate limiting fetches-per-server.!
– Configurable upper limit (default 0 = unlimited)!
– Per-server quota dynamically re-sizes itself

based on the ratio of timeouts to successful
responses!

– Completely non-responsive server eventually
scales down to fetches quota of 2% of
configured limit.!

Experimental Approaches – 3!
•  Rate-limiting fetches-per-zone!
– Similar to clients-per-query!
– Works with unique clients!
– Tune larger/smaller depending on normal QPS

to avoid impact on popular domains!
– Could be less effective against non-

responding server for many zones!

QUESTIONS?!

Thank You!

