Anycast DNS

ISC Webinar, October 14, 2015
Logistics

- Webinar is 1 hour long
- This session will be recorded and posted at http://www.isc.org/webinars
- Participants are muted to improve audio quality for everyone.
- We want questions! Please enter into the WebEx Q&A tab
 - The presenter may defer some questions until the end of the presentation
Presenter

Jason Lomonaco, Sr. Network Engineer
Agenda

- Define Anycast
- Examine use cases
- Explore the impact on Internet protocols
- Explore Anycast and DNS
- Share ISC’s operational experience
- Answer questions
ANYCAST

Define
What is Anycast?

- Anycast describes a method of using the same IP address on multiple servers.
- Fundamentally, Anycast is a *routing scheme*.
- Anycast is more about the configuration of routers and routing than servers.
 - Server admins have to understand what’s going on in order to properly operate the service.
Routing Schemes Compared

Baseline
Routing Schemes Compared

Baseline

Unicast
Routing Schemes Compared

Baseline

Unicast

Broadcast
Routing Schemes Compared

Baseline

Unicast

Broadcast

Multicast
Routing Schemes Compared

Diagram from http://en.wikipedia.org/wiki/Anycast, and are public domain.
Properties of Anycast

- Each packet sent to an Anycasted IP address may reach a different server.
- Packets are routed to the IP address with the best network metric.
 - This is often the nearest server, but not always. Metrics could be set based on other factors, such as bandwidth, cost, load or reliability.
- Servers with an Anycast address must also have a Unicast IP address.
USE CASES

Examine
Use Cases

- **Local Anycast**
 - Distributes load across multiple servers on same subnet
 - Eliminates need for load balancer by making the network (router) distribute traffic
Use Cases

- Local Anycast
 - Distributes load across multiple servers on same subnet
 - Eliminates need for load balancer by making the network (router) distribute traffic
Use Cases

- **Local Anycast**
 - Distributes load across multiple servers on same subnet
 - Eliminates need for load balancer by making the network (router) distribute traffic

Routes may originate via any supported protocol
- static/RIP/OSPF/ISIS/EIGRP/BGP
- dynamic routing handles most failure cases
- active service probing from the router is an option
Use Cases

- **Local Anycast**
 - Distributes load across multiple servers on same subnet
 - Eliminates need for load balancer by making the network (router) distribute traffic

Routes may originate via any supported protocol
- static/RIP/OSPF/ISIS/EIGRP/BGP
- dynamic routing handles most failure cases
- active service probing from the router is an option

ONE ROUTE!
Reduces routing issues
Global Anycast

- Distributes load across multiple locations
- Provides redundancy
Global Anycast

- Distributes load across multiple locations
- Provides redundancy
Global Anycast

- Distributes load across multiple locations
- Provides redundancy
Anycast with DNS

DNS, recursive servers
- Configured by IP address on clients
- Latency is important
- Distribute load across multiple devices

DNS, authoritative
- Limited number of authority IP’s can be listed in a single reply packet
- Latency to the server is important
- Redundancy a large concern
- Distribute load across multiple devices
POLL QUESTION

Are you Anycasting Today?
(results will be shared at the end of the presentation)
IMPACT ON PROTOCOLS

Explore
Impact on Protocols: ICMP

- Global, stateless options work fine
 - Ping request/reply
 - ICMP Traceroute
 - Network instability can produce some odd results with traceroute
- Avoid LAN options
 - Router Advertisement/Solicitation
 - Address Mask Request/Reply
 - Redirect
 - A unicast address on the server can mitigate these issues
 - It’s easy to avoid all of these ICMP options
Impact on Protocols: UDP

- Stateless, which is good for Anycast
- Works well when the query is one packet, and the response is 1-n packets, and there is no state between queries
 - Sounds like the majority of DNS queries!
- If the query is more than one packet, or there is state between queries, the behavior tends to be the same as TCP
Impact on Protocols: TCP

- Only works when the network path is stable.
 - This is *never true in the long term*, but is often true for short periods of time

- The Unicast sender has to reach the same Anycast destination for the duration of the connection
 - One packet to the wrong device causes it to generate a TCP Reset, which generally tears down the connection
Impact on Protocols: TCP

TCP SYN
Impact on Protocols: TCP

TCP SYN
TCP SYN/ACK
Impact on Protocols: TCP

TCP SYN
TCP SYN/ACK
TCP ACK/Data
Impact on Protocols: TCP

TCP SYN
TCP SYN/ACK
TCP ACK/Data
TCP Reset
Impact on Protocols: TCP

- Operationally, what does it mean?
 - The location of the Anycast servers is important, and depends on the network topology and configuration
 - When properly deployed, there is a high success rate for short duration connections
 - The longer the connection, the greater the risk of failure

- For Internet services it’s not just your network, but every network the packet traverses to the Anycast server!
DNS & ANYCAST

Explore
Most common queries are a single UDP packet, with 1-3 UDP packets of response

TCP queries are extremely short lived
- User->Server: SYN, ACK w/query, ACK/FIN
- Server->User: SYN/ACK, ACK w/Data, ACK/FIN
 • Maybe an additional data packet
- The FIN can be lost in some implementations and the data still be received

Zone transfers are longer lived TCP queries
- Length depends on zone size
- Some zones don’t allow, mitigating the issue
End User Resolvers

Backbone

Regional Hub

Pop #1
Users

Regional Hub

Pop #2
Users

Pop #3
Users

Pop #4
Users
End User Resolvers

Backbone

Regional Hub

Regional Hub

Pop #1

User queries

Stay local

Pop #2

Pop #3

Pop #4

Users

Users

Users

Users
End User Resolvers

Backbone

Regional Hub

Regional Hub

Pop #1

Users

Pop #2

Users

Pop #3

Users

Pop #4

Users

User queries
Stay local
End User Resolvers

Failure reroutes
No user outage

User queries
Stay local

Regional Hub

Backbone

Regional Hub

Pop #1
Users

Pop #2
Users

Pop #3
Users

Pop #4
Users
Anycast & DNS

- Authority servers across an ISP/Enterprise provide redundancy, load distribution and hitless maintenance
Anycast & DNS

- Authority servers across an ISP/Enterprise provide redundancy, load distribution and hitless maintenance

Queries stay local
Anycast & DNS

- Authority servers across an ISP/Enterprise provide redundancy, load distribution and hitless maintenance

Pop Failure
Anycast & DNS

- Authority servers across an ISP/Enterprise provide redundancy, load distribution and hitless maintenance

Queries re-routed, service still up
Anycast & DNS

- Authority servers across multiple networks

- ISP redundancy
- Lower latency, Keep traffic local

© 2015 ISC
Anycast & DNS

- Authority servers across multiple networks

- ISP redundancy
- Lower latency, Keep traffic local

Queries stay local
ISC’S OPERATIONAL EXPERIENCE

Share
F-Root
F-Root – 3 Levels

1. Local LAN
 - Each deployment has a minimum of 2 servers on the local network for redundancy, more where necessary

2. Local Nodes
 - A typical F-Root deployment at an exchange point or inside of an ISP network
 - Announces 192.5.5.0/24 and 2001:500:2f::/48 with NO_EXPORT set
 • Because of the NO_EXPORT settings these routes will not be visible to all end users

3. Global Nodes
 - Larger nodes, with significant transit capacity
 - Announce 192.5.4.0/23 and 2001:500:2e::/47, supernets of the local node prefixes
 - These networks should be visible to all end users on the Internet
F-Root

Diagram showing the structure of F-Root with Global Node, ASN, IX, Local Node, and Customer nodes. The diagram illustrates the peer relationships and connectivity between these nodes.
F-Root

192.5.4.0/23 2001:500:2E::/47

Global Node

Local Node

IX

ASN

Customer

Customer

Customer

Customer

Customer

Customer

ASN Peers w/ F

ASN Does not peer

ASN

ASN

ASN

ASN Does not peer

ASN

ASN Peers w/ F
F-Root

Global Node

ASN

ASN

ASN

IX

IX

IX

Local Node

ASN Peers w/ F

ASN Does not peer

Customer

Customer

Customer

Customer

Customer

Customer

192.5.4.0/23 2001:500:2E::/47

NO_EXPORT
192.5.5.0/24
2001:500:2F::/48

NO_EXPORT
192.5.5.0/24
2001:500:2F::/48

192.5.4.0/23 2001:500:2E::/47
F-Root

Global Node

ASN

IX

Local Node

ASN

IX

Customer

ASN

NO_EXPORT
192.5.5.0/24
2001:500:2F::/48

192.5.4.0/23
2001:500:2E::/47

192.5.4.0/23
192.5.5.0/24
2001:500:2E::/47
2001:500:2F::/48

Customer

ASN

Does not peer

Customer

ASN

Peers w/ F

Customer

ASN

Does not peer

Customer

ASN

Peers w/ F

Customer

ASN

Does not peer

Customer

ASN

Peers w/ F

Customer

© 2015 ISC
Why 3 Levels?

- A strong desire to keep local traffic local
 - Local nodes may be deployed in bandwidth starved areas, like behind satellite links, and thus shouldn’t draw in queries from far away
 - Provide an incentive for local ISP’s to peer with the local F-Root instance

- Diversity in the Root Server ecosystem
 - Root operators believe that having different parties deploy in different models allows for more effective service of different user communities, and provides a more difficult attack surface
 - No one else uses this method!

This does create some confusion
 - ISP’s think that because the local route has NO_EXPORT their customers won’t see F-Root, but this isn’t true due to the covering supernet
F-Root Measurements
Global View of F-root Latency
(red = 200ms+)
US Transit Misconfiguration (ATL1)
ATL1 - post reconfiguration
BGP NO_EXPORT leak!
How we trace an F-Root local leak

All sites originate the F-Root prefix with the same ASN 3557. All sites then have their own unique site ASN.

An example of the Santiago, Chile leak from Tier1 network looking glass:
192.5.5.0/24 *[BGP/170] 00:01:12, MED 500, localpref 200, from 213.248.64.245
AS path: 27986 6471 33075 3557 I, validation-state: unverified
PLIX route server
NO_EXPORT
PLIX After
PAO1 over-connected
PAO1 after dropping route announcement to international carrier
Amsterdam(AMS1) Global Site
Czech Republic (PRG1)
SNS-PB

- ISC’s authoritative hosting product for public benefit. It is available only to under-served, non-commercial entities, such as the top-level domains of smaller countries or territories.
- Uses the other half of the global F-Root Global prefix: 192.5.4.0/24 and 2001:500:2E::/48.
- Customers of SNS-PB operate their own primary name servers where they manage their DNS zone data, and then SNS-PB transfers this zone data to one or more of our globally anycast name server clusters.
ANYCAST

Summarize
Summary

- Anycast is a routing scheme that can be useful when deploying some applications
- There are some protocol level implications that must be considered when designing an Anycast deployment
- DNS is generally well suited to Anycast deployments, and is one of the most popular services to Anycast
- Lots of other folks are doing it, don’t be afraid!
For more information

- Ray Bellis F-Root presentation at UKNOF: https://www.youtube.com/watch?v=FnWOZEmniik&index=9&list=PLjzK5ZtLlc91iPCbC1uf3_Bn0Gol8EnBO
- RIPE ATLAS: https://atlas.ripe.net/
- If you’re interested with peering to F-Root please see our peeringdb for locations and contact information: as1280.peeringdb.com
Poll Question (answer during Q&A session)

Would you like to see another webinar on Anycasting DNS from ISC?