BIND 9.11 Update

August 31, 2016
BIND Core Team

- Evan H.: sw eng, team lead
- Mark A.: sr sw eng
- Mukund S.: sw eng
- Witold K.: sw eng
- Stephen M.: director of sw eng
- Jeremy R.: qa manager
- Curtis B.: qa engineer
- Ray Bellis: research fellow
New in 2015

- Evan H. - sw eng, team lead
- Mark A. - sr sw eng
- Mukund S. - sw eng
- Witold K. - sw eng
- Stephen M. - director of sweng
- Jeremy R. - qa manager
- Curtis B. - qa engineer
- Ray Bellis - research fellow
Added in 9.11*

<table>
<thead>
<tr>
<th>Bug fix</th>
<th>Feature change</th>
<th>Other (libraries, tests, docs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>106</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S?</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>38</td>
<td>121</td>
<td>37</td>
<td>56</td>
</tr>
</tbody>
</table>

* some features and most fixes have appeared in prior maintenance versions
New in BIND 9.11

- **Zone Provisioning improvements**
 - Catalog zones
 - RNDC updates
 - NZF w/ LMDB
 - notify rate
 - DynDB

- **DNSSEC**
 - Negative trust anchor
 - keymgr utility
 - CDS, CDSKEY generation

- **dnstap**
- **DNS Cookies**
- **minimal ANY**
- **IPv6 bias**
Provisioning challenges

- Updating zone list across a large pool of slaves
- Notify traffic overhead, particularly with a multi-tiered system
- RNDC designed for human interaction, being used by scripts
- Zones added via RNDC very slow to delete
User Scripts

IXFR/AXFR maintain zone CONTENTS only, for zones already configured on slaves

Left to the user to create a script or process for maintaining slave zone lists

User scripts frequently use RNDC as an automation interface

Or use ‘include’ files to maintain slave named.conf files
Scripts

User Scripts → MAINTENANCE

User Scripts → BREAKAGE

User Scripts → CONSULTING OPPTY
Catalog Zone

- a new zone on the master
 - in a special new format
 - contains a list of zones (the CatZ)

- updates to this zone are propagated to slaves, via IXFR/AXFR, adding and deleting zones
Add Zones to Master

Master or Primary

Slave or Secondary

Member

Content

zones
Create/Update Zone Catalog

Master or Primary

Configuration

Member zones

Content

Slave or Secondary

python ./catz-add.py example2.com
adds the zone to both the master and the catalog zone at the same time
Catalog is a Zone

Master or Primary

Slave or Secondary

© 2016 ISC
Configure CatZ on Slave

Master or Primary

Slave or Secondary

catalog-zones {
 zone "catz.isc.org";
}
Configuration

Master

```plaintext
options {
    listen-on {
        10.53.0.1;
    };
    allow-new-zones yes;
};

zone "catz.isc.org" {
    type master;
    file "catz.isc.org.db";
    allow-transfer {
        10.53.0.2;
    };
};
```

Slave

```plaintext
options {
    listen-on {
        10.53.0.2;
    };
    allow-new-zones yes;
    catalog-zones {
        zone "catz.isc.org";
    };
};

zone "catz.isc.org" {
    type slave;
    masters {
        10.53.0.1
    };
};
```
Zones added to Slave

When the catalog zone is transferred to slaves, the zone catalog on the slave is updated, adding new member zones.
Zone Deleted from Catalog

Master or Primary

Slave or Secondary

© 2016 ISC
Zone Deleted from Slave

Master or Primary

Slave or Secondary

When the catalog zone is transferred to slaves, the zone catalog on the slave is updated, removing member zones.
When the catalog zone is transferred to slaves, the zone catalog on the slave is updated, removing member zones.
Multiple catalogs

Master

Configuration

Member zones

Content

Slaves

© 2016 ISC
Transfer Hierarchy Supported

Master

Transfer

Slaves

© 2016 ISC
Adding another Slave

Master

Transfer

Slaves

© 2016 ISC
Adding another Slave

Master

Transfer

Slaves

© 2016 ISC
Zone options supported

- master
- allow-update
- allow-transfer
- keys
- allow-query
Provisioning challenges

✓ Updating zone list across a large pool of slaves
 ▪ notify traffic overhead, particularly with a multi-tiered system
 ▪ RNDC designed for human interaction, being used by scripts
 ▪ Zones added via RNDC very slow to delete
Notify Storms

Large systems, particularly with a transfer layer of servers, experience notify congestion

- Separate startup notify-rate queue
- LIFO rather than FIFO gets newly added zones updated faster
Automating with RNDC

New RNDC commands

- check if a zone exists
- show current zone configuration
- modify zone configuration
- offer read-only access for unprivileged applications
RNDC Python Module

reuse RNDC a single connection for a whole series of commands
Faster Zone Removal

- zones added via RNDC stored in a ‘new zone file’ (NZF)
- deleting entries from NZF can be 5x slower than adding a zone
- compile with Lightning Memory-Mapped Database Manager (LMDB) if this is an issue for you
Provisioning challenges

✓ Updating zone list across a large pool of slaves
✓ Notify traffic overhead, particularly with a multi-tiered system
✓ RNDC designed for human interaction, being used by scripts
✓ Zones added via RNDC very slow to delete
Alternative: Keep all zones in an external database

- PowerDNS does this
- OpenStack uses this model
- DLZ enables this – but zones are served very slowly
- Deployment choice to prefer DB tools, such as Multi-Master, to propagate information
NEW - DynDB interface

- Load zone data into memory from external database
- Performance is ~ 95% of ‘native’ zone files!
- Works with DNSSEC
- Developed for RedHat’s FreeIPA (LDAP)
 https://fedorahosted.org/bind-dyndb-ldap/
- We are hoping for contributions of other backends, such as LMDB or Cassandra
Provisioning Options

Master

Slave

RNDC

BIND

NZF

ZF

Named.conf

Script

© 2016 ISC
Provisioning Options

- RNDC
- Named.conf
- BIND Zone files
- Named.com
- RNDC
- Script
- Master
- Slave
- CatZ
- Bind
Provisioning Options

RNDC

BIND

BIND Zone files

RNDC

BIND

CatZ

DynDB

BIND

Master

Slave

Multi-master db

RNDC

BIND

Named .conf

Named .com

Script

© 2016 ISC
Provisioning Summary

- Traditional BIND zone files (load on restart) load faster with map format added in 9.10, now can be removed with RNDC.
- New zone files (NZF) added dynamically during operation (via RNDC) - now in LMDB database.
- Both of above, now propagated to slaves with Catalog Zones in 9.11.
- Automated provisioning operations via RNDC.
- External zone database now with no performance penalty using DynDB.
New in BIND 9.11

- **Zone Provisioning improvements**
 - Catalog zones
 - RNDC updates
 - NZF w/ LMDB
 - notify rate
 - DynDB

- **DNSSEC**
 - keymgr utility
 - CDS, CDSKEY generation
 - Negative trust anchor

- dnstap
- DNS Cookies
- minimal ANY
- IPv6 bias
python script intended to be scheduled in a cron job
reads a policy definition file and creates or updates DNSSEC keys to ensure that a zone's keys match the policy for that zone.

New keys are created when necessary
If the policy changes, all applicable keys are corrected

Automates repetitive maintenance tasks
Policy Definition

- **Policy Classes**
 - different profiles for zones needing higher security

- **Algorithm policies**
 - e.g. default key size for a given algorithm

- **Policy options**
 - algorithm, TTL, ‘coverage’, key size, roll period, pre-publish, post-publish

thanks to Sebastian Castro, .NZ for his help on this tool
Parent-child updating

- Unsolved problem in DNSSEC
- How to upload DNSSEC KSK data to parent zone *securely*
- Today, this is often manual, using a web portal
Parent Polls Child

- Child performs a KSK rollover
- **BIND automatically creates both CDS and CDSKEY records, signed with KSK**
 - Use DNSSEC to authenticate updates
- Parent polls for either CDS or CDSKEY
 - Some parents want to receive DNSKEYs and create the DS record
 - Other want to receive DS records
DNSSEC-blame

when a secured domain fails to validate, users blame the validating resolver
Negative Trust Anchor

\texttt{rndc nta [(-d | -f | -r | -l \textit{duration})] domain [view]}

- Temporarily disables DNSSEC validation (1 hour, up to 1 week)
- stored in a file (\textit{viewname}.nta) in order to persist across restarts
- nta-recheck. \texttt{named} will periodically test to see whether data below an NTA can now be validated
New in BIND 9.11

- **Zone Provisioning improvements**
 - Catalog zones
 - RNDC updates
 - NZF w/ LMDB
 - notify rate
 - DynDB

- **DNSSEC**
 - Negative trust anchor
 - keymgr utility
 - CDS, CDSKEY generation

- **dnstap**
- **DNS Cookies**
- **minimal ANY**
- **IPv6 bias**
dnstap

- flexible method for capturing and logging DNS traffic (query + response)
- more DNS intelligence than pcap
- lower overhead than BIND logging
- works across BIND, Knot and Unbound
Output: socket or file

socket

dnstap {auth; resolver query;} ;
dnstap-output unix "/var/run/bind/dnstap.sock";

file

dnstap { all; } ;
dnstap-output file "/var/tmp/example.dnstap";
when dnstap output is being written to a file ...

- `rndc dnstap -roll` causes dnstap output files to be rolled like log files
 - Currently (in 9.11.0), you must roll the logs as needed
- Note that dnstap is designed to drop logs rather than block operation
- New `dnstap-read` utility makes log files human-readable.
dnstap References

Thanks to Robert Edmonds, Farsight Security, Inc.

- BIND dnstap webinar posted at https://www.isc.org/mission/webinars/
- http://dnstap.info
Problem: Source IP Spoofing

- BIND resolver checks the Source port, the Question, and now, also the Cookie
- Valid cookie tells us that source IP is not spoofed, so less likely to be abuse traffic

Not all abuse involves spoofed addresses (infected clients)
Cookie Controls

- **require-server-cookie**
 - require valid cookie before sending full answer (resolver and authoritative)

- **send-cookie**

- **no-cookie-udp-size**
 - limits the size of response that will be sent without a cookie

- **cookie-secret**
 - enables cluster to share cookies
Cookies pros and cons

PROs
- Minimal overhead
- Avoid amplification
- Minimize round trips
- Cookies can be shared amongst server pools
- Easy to deploy, opportunistic
- May eventually eliminate need for source-port randomization (!!!)
- IETF-Standardized

CONs
- Like other EDNS options, can trigger EDNS incompatibilities
- Not a ‘magic bullet’, just part of the arsenal
Cookies pros and cons

PROs
- Minimal overhead
- Avoid amplification
- Minimize round trips
- Cookies can be shared amongst servers
- Easy to deploy, opportunistic
- May eventually eliminate need for source-port randomization (!!!)
- IETF-Standardized

CONs
- Like other EDNS options, can trigger EDNS incompatibilities
- Not a ‘magic bullet’, just part of the arsenal
DNS Cookies

- no cookie, invalid cookie
 - minimal response

- valid cookie
 - no rate limiting
Avoid Amplifying Responses

* thanks to Tony Finch
IPv6 Bias

- **Glue** (in 9.9.9, 9.10.4+)
 - Prefer A for IPv4 connections
 - Prefer AAAA for IPv6 connections

- **SRTT adjustment** (in 9.11)
 - default value is 50 MS
 - gives IPv6 address 50 MS advantage in selection
IPv6 Bias

- Glue (in 9.9.9, 9.10.4+)
 - Prefer A for IPv4 connections
 - Prefer AAAA for IPv6 connections

- SRTT adjustment (in 9.11)
 - Default value is 50 MS
 - Gives IPv6 address 50 MS advantage in selection
Other

- many new dig options, multiple dig (mdig)
- squelch duplicate processes (help the novice!)
- relaxed PKCS#11 interface to enable pci card hsms
- TLSA record sent with MX record
- IPv6 mtu change to avoid fragmentation
- server-side support for pipelined TCP queries
- default value for the number of UDP listeners = detected processors minus one
- quantum signing size control (sig-signing-signatures number)
New RRTYPES

- **AVC** - Application Visibility and Control (Cisco)
- **CDS** Contains the set of DS records that should be published by the parent zone.
- **CDSKEY** Identifies which DNSKEY records should be published as DS records in the parent zone.
- **CSYNC** Child-to-Parent Synchronization in DNS as described in RFC 7477.
- **NINFO** - Zone status information
- **OPENPGPKEY**
- **RKEY** - Resource record key
- **SINK** - Kitchen Sink record
- **SMIME** - S/MIME Security Certificate (in 9.10.4)
- **TA, TALINK** – Trust Anchor, Trust Anchor link
Invisible Features

Since 9.10.0, we have added:

- continuous performance testing
- regular, on-going fuzz testing
- new, more complicated build test combinations
Performance

Performance generally DECREASES as you add features

expect a decrease in qps from 9.10 for authoritative (for few XXL zones)

about the same as 9.10 for large #s of small zones

Resolver operators will see an increase in qps (vs 9.10)

© 2016 ISC
References

5. Using DANE to Associate OpenPGP public keys https://datatracker.ietf.org/doc/rfc7929/
6. www.dnstap.info

© 2016 ISC
Summary: New in BIND 9.11

- CATalog Zones
- RNDC features
- Cookies!
- dnstap
- DNSSEC updates
- Minimal ANY