DNS flag days (plural!)

2019 and beyond

2019-05-21 RIPE 78
Petr Špaček <petr.spacek@nic.cz>, CZ.NIC
Ondřej Surý <ondrej@isc.org>, ISC
Outline

- Motivation
- What is DNS flag day?
- 2019 - wrap up
- 2020? - early heads up
Motivation: Does DNS just work?

- Problem #1: DNS is complex (200 RFCs!)
- Hard to implement
- People make implementation mistakes
- Vendors add workarounds to improve interoperability
- With workarounds, it "just works"
Motivation: Workarounds ... so what

- Problem #2: DNS workarounds ossify
- Workarounds interact with
 - Standard protocol
 - Other workarounds!
- Workarounds *from 1999* causing breakage in *2018!*
- Breakage/cost incurred on compliant players
- **No incentive for non-compliant players to fix things**
DNS flag day: theory

- Trash pick up day!
- Software vendors + big DNS operators cooperate
- Workarounds get removed on certain date
- Shifts costs to non-compliant players
- Compliant players do nothing
DNS flag day 2019
DNS flag day: 2019 in practice
2019: Recap

- First time in history
- A lot of fear
- Misunderstandings
- Reach out campaign
- News articles
- Measurements
2019: T_0 - 3 months, sample 23 M domains

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>48.61 %</td>
<td></td>
</tr>
<tr>
<td>Compatible</td>
<td>23.37 %</td>
<td></td>
</tr>
<tr>
<td>High latency</td>
<td>13.15 % 7.48 %</td>
<td></td>
</tr>
<tr>
<td>Dead</td>
<td>14.87 % 20.55 %</td>
<td></td>
</tr>
<tr>
<td>Breakage</td>
<td></td>
<td>+5.68 %</td>
</tr>
</tbody>
</table>
2019: $T_0 - 3$ months: clusters of breakage

<table>
<thead>
<tr>
<th>provider domain</th>
<th>breakage</th>
<th># broken</th>
</tr>
</thead>
<tbody>
<tr>
<td>hichina.com.</td>
<td>35.78 %</td>
<td>469 611</td>
</tr>
<tr>
<td>dnspod.com.</td>
<td>25.66 %</td>
<td>336 797</td>
</tr>
<tr>
<td>myhostadmin.net.</td>
<td>5.04 %</td>
<td>66 208</td>
</tr>
<tr>
<td>xincache.com.</td>
<td>4.82 %</td>
<td>63 246</td>
</tr>
<tr>
<td>dnspod.net.</td>
<td>3.27 %</td>
<td>42 881</td>
</tr>
<tr>
<td>dnsdun.net.</td>
<td>2.85 %</td>
<td>37 435</td>
</tr>
<tr>
<td>gmoserver.jp.</td>
<td>2.71 %</td>
<td>35 595</td>
</tr>
<tr>
<td>registrar-servers.com.</td>
<td>1.64 %</td>
<td>21 533</td>
</tr>
<tr>
<td>alidns.com.</td>
<td>1.63 %</td>
<td>21 369</td>
</tr>
<tr>
<td>metaregistrar.nl.</td>
<td>1.20 %</td>
<td>15 762</td>
</tr>
</tbody>
</table>

$\sum 85 \%$
Prepare for impact

https://dnsflagday.net
2019: Did it work?

- It did work
- Cooperative community
- Vast majority domains fixed
- Remaining domains largely unused (parking ...)
- Support lines remained silent
- No measurable problems
- Big thank you to all involved players!
2019: Lessons learned

- We **can improve** Internet at global scale
 - As long as we cooperate
- Communication was a problem
 - Missing communication channel to operators
 - Thus this presentation!
DNS flag day 2020
2020: Motivation

- IP fragmentation does not work
 - http://www.potaroo.net/ispcol/2017-08/xtn-hdrs.html
- If IP fragmentation works, it is not secure enough
 - Research by Kazunori Fujiwara
 https://indico.dns-oarc.net/event/31/contributions/692/
- -> UDP is unsuitable for large DNS messages
- Operational issues around the globe
2020: Goal

- Eliminate operational issues caused by fragments
- Improve security of DNS
 - Also, think of domain validation ...
2020: Eliminating fragments

- For **large DNS answers** switch to TCP
 - No change for small answers - UDP
- Existing standards
 - DNS over TCP in RFC 7766 and predecessors
 - Default EDNS buffer size ~ 1220 (= never fragment)
- Non-compliance on several levels
 - Authoritative - do not listen on TCP
 - Authoritative - do not honor EDNS buffer size
 - Recursive (ignores TC=1)
2020: Advantages of TCP

- Hides IP fragmentation issues
- Harder to spoof
 - Low-throughput high-value services
 - CA domain validation
 - DNSSEC bootstrapping (CDS/CDNSKEY)
- Preparation for DNS-over-TLS
2020: Authoritative side (operations)

- Honor RFC 7766 - DNS Transport over TCP
- Answer on TCP port 53
 - Check your firewall, too!
- EDNS buffer size ≈ 1220 to avoid fragmentation
 - Defaults in software will reflect this
- Authoritative MUST NOT send oversized answers
 - Standard compliant software does not require changes
2020: Resolver side (operations)

- Honor RFC 7766
- Answer on TCP port 53
 - Check your firewall, too!
- EDNS buffer size ≈ 1220 to avoid fragmentation
 - Defaults in software will reflect this
- Resolvers MUST support fallback from UDP to TCP
 - Standard compliant software does not require changes
2020: Preliminary measurement

- ~ 7 % domains on servers not accepting TCP
 - Not all domains are equal
 - Includes parked domains etc.
- Breakage is very concentrated
- 1 operator > 70 %
- 9 operators > 90 %
TCP on auths in May 2019, 34 M domains, 59 TLDs

<table>
<thead>
<tr>
<th>Mode</th>
<th>TCP as last instance</th>
<th>TCP required</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>67.52 %</td>
<td>67.52 %</td>
</tr>
<tr>
<td>High latency</td>
<td>12.83 %</td>
<td>5.76 %</td>
</tr>
<tr>
<td>Dead</td>
<td>19.65 %</td>
<td>26.72 %</td>
</tr>
</tbody>
</table>

Breakage +7.07 %

net, co, xyz, se, cz, loan, online, club, site, icu, nz, shop, ltd, cl, mobi, app, live, pro, website, space, nu, fun, store, win, tech, men, life, blog, stream, world, dev, wang, bid, rocks, cat, tokyo, xxx, today, design, trade, xin
Top ten: TCP-broken providers in May 2019

<table>
<thead>
<tr>
<th>provider domain</th>
<th>breakage</th>
<th># broken</th>
</tr>
</thead>
<tbody>
<tr>
<td>hichina.com</td>
<td>67.84 %</td>
<td>1,610,817</td>
</tr>
<tr>
<td>name-services.com</td>
<td>6.74 %</td>
<td>160,070</td>
</tr>
<tr>
<td>foundationapi.com</td>
<td>3.66 %</td>
<td>86,970</td>
</tr>
<tr>
<td>xincache.com</td>
<td>2.63 %</td>
<td>62,479</td>
</tr>
<tr>
<td>alidns.com</td>
<td>2.16 %</td>
<td>51,309</td>
</tr>
<tr>
<td>123-reg.co.uk</td>
<td>2.04 %</td>
<td>48,411</td>
</tr>
<tr>
<td>domainparkingserver.net</td>
<td>1.69 %</td>
<td>40,036</td>
</tr>
<tr>
<td>ztomy.com</td>
<td>1.27 %</td>
<td>30,238</td>
</tr>
<tr>
<td>mytrafficmanagement.com</td>
<td>1.23 %</td>
<td>29,285</td>
</tr>
<tr>
<td>myhostadmin.net</td>
<td>1.05 %</td>
<td>24,856</td>
</tr>
</tbody>
</table>
2020: Testing manually

- **Tools with nice UI are coming**
- Manual test - all queries must succeed
 - $ dig +tcp @auth_IP yourdomain.example.
 - $ dig +tcp @resolver_IP yourdomain.example.
 - $ dig @resolver_IP test.knot-resolver.cz. TXT
2020: Test resolver configuration

- **BIND**
 - options { edns-udp-size 1220; };
- **Knot Resolver**
 - net.bufsize(1220)
- **PowerDNS Recursor**
 - edns-outgoing-bufsize=1220
- **Unbound**
 - server:
 - edns-buffer-size: 1220
2020: What's missing

- Exact date
 - Measurements in progress
 - Targeting February 2020 - 9 months from now
- Exact EDNS buffer size value
 - 1220, 1232, 1280, ...
 - Will go into software defaults (there's no time based trigger)
- None of these change the principle
 - DNS over TCP must work
2020: Get in touch

- Web https://dnsflagday.net/
- Twitter https://twitter.com/dnsflagday
- Announcements: https://lists.dns-oarc.net/mailman/listinfo/dns-announce
- Questions: dns-operations@lists.dns-oarc.net
- Talk to us this week
 - NOGs around?
Questions?