
Ondřej Surý, ISC; RIPE 91 22.10.2025

Streamlining the release process from git

Open-Source Release
Engineering

Software Engineers vs QA vs Users

The Everlasting Clash

Release Engineering

Release Engineering

Release Engineering

Release Engineering

Release Engineering

Release
Documentation

Source Code

Packages
(DEB/RPM)

Containers

Test Results

Release
Documentation

Source Code

Packages
(DEB/RPM)

Containers

Test Results

Release
Documentation

Source Code

Packages
(DEB/RPM)

Containers

Test Results

Release Engineering
Multiple Releases

Release Checklist for BIND 9.18.40, 9.18.40-S1, 9.20.14/9.20.15, 9.20.14-
S1/9.20.15-S1, 9.21.13

Edit

Open Issue created 3 weeks ago by Michał Kępień Show sidebar

27 of 57 checklist items completed · Edited 1 day ago by Michał Kępień

Release Checklist for BIND 9.18.40, 9.18.40-S1, 9.20.14/9.20.15, 9.20.14-S1/9.20.15-S1, 9.21.13

Release Schedule

Code Freeze: Wednesday, 1 October 2025

Tagging Deadline: Monday, 6 October 2025

EVN Release: Wednesday, 8 October 2025

Public Release: Wednesday, 22 October 2025

Documentation Review Links

Closed issues assigned to the milestone without a release note:

Merge requests merged into the milestone without a release note:

Merge requests merged into the milestone without a changelog entry:

Release Checklist

Before the Code Freeze

Before the Tagging Deadline

Before the EVN Deadline

Wednesday, 8 October 2025

On the Day of Public Release

Wednesday, 15 October 2025

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

(QA) Rebase -S editions on top of current open-source versions: git checkout bind-9.18-sub && git rebase --rebase-merges origin/bind-9.18
(QA) Inform Support and Marketing of impending release (and give estimated release dates).
(QA) Ensure there are no permanent test failures on any platform. Check public and private scheduled pipelines.
(QA) Check charts from shotgun:* jobs in the scheduled pipelines to verify there is no unexplained performance drop for any protocol. (Shotgun tests are currently
b0rked, so there is no way to check this.)
(QA) Check Perflab to ensure there has been no unexplained drop in performance for the versions being released.
(QA) Update GitLab settings for all maintained branches to disallow merging to them: public, private
(QA) Announce (on Mattermost) that the code freeze is in effect.
‣ Details

(QA) Ensure all merge requests marked for backporting have been indeed backported.
(QA) Check whether all issues and merge requests assigned to the release milestone are resolved .1

(QA) Branch-off open-source release branches (e.g. v9.20.X-release) from all maintained branches and push them to the private repository.
(QA) Merge any outstanding merge requests in the private repository to the open-source release branches. (e.g. security fixes)1

(QA) Rebase -S editions on top of the open-source release branches and branch-off -S release branches (e.g. v9.20.X-S1-release).
(QA) Merge any outstanding -S specific merge requests in the private repository to the -S release branches. (-S specific fixes)1

(QA) Inspect the current output of the cross-version-config-tests job to verify that no unexpected backward-incompatible change was introduced in the current
release cycle.
(QA) Reword any -S specific commits from previous release that would generate a release note or changelog entry.
(QA) Generate changelog and release notes from git log. (Run prep_doc_mr.py for instructions.)
(QA) Ensure release notes are correct, ask Support and Marketing to check them as well. Example
(QA) Update BIND 9 version in configure.ac (9.18+)
(QA) Tag the releases in the private repository (git tag -s -m "BIND 9.x.y" v9.x.y).
(QA) Assign the merged MRs to versioned milestones.
(QA) Update GitLab settings for all maintained branches to allow merging to them again: public, private
(QA) Announce (on Mattermost) that the code freeze is over.
‣ Details

(QA) Check that the formatting is correct for the HTML version of release notes.
(QA) Verify GitLab CI results for the tags created and sign off on the releases to be published.
(QA) Prepare and merge MRs updating the version string for each maintained branch (using version_bump.py).
(QA) Rebase the Subscription Edition branches (including recent release prep commits) on top of the open source branches with updated version strings.
(QA) Request signatures for the tarballs; ask signers on Mattermost.
(Signers) Ensure that the contents of tarballs and tags are identical (using release-tarball-comparison.sh).
(Signers) Sign tarballs and upload signatures.
(QA) Verify tarball signatures and check tarball checksums again: Run publish_bind.sh on repo.isc.org to pre-publish.
(QA) Prepare the patches/ subdirectory for each security release (if applicable).
(QA) Pre-publish EVN and/or Subscription Edition tarballs so that packages can be built.
(QA) Build and test EVN and/or Subscription Edition packages (in cloudsmith branch in private repo). Example
(Support) Prepare and send out EVN emails (as outlined in the CVE checklist; if applicable).
(QA) Publish EVN packages in Cloudsmith.

(QA) Ask for clearance from Incident Managers to proceed with the public release (if applicable).
(QA) Update Known Issues lists (9.18, 9.20).
(QA) Ensure all new tags are annotated and signed. git show --show-signature v9.19.12
(QA) Push tags to customer git repositories by triggering the customer-git:tag jobs in all the tag pipelines in the private repo.
(QA) Push tags for the published releases to the public repository.
(QA) Push the stable tag to be the same as the latest v9.20.x .
(QA) Place tarballs in public location on FTP site.
(QA) Inform Marketing of the release, providing FTP links for the published tarballs.
(QA) Use the Printing Press project to prepare a release announcement email.
(Marketing) Before proceeding with publication, check any CVE checklists associated with this release to ensure they are ready for publication.
(Marketing) Publish links to downloads on ISC website. Update hidden security releases table in the downloads data file in case of security release. Example
(Marketing) Update the BIND -S information ticket in the support portal with download links to the new versions. (If this is a security release, this will have already
been done as part of the EVN process.)
(Marketing) Open a ticket in the read-only BIND-Announce queue in the support portal to announce the release to support customers if a major release or significant
change to a stable version (or packages).
(Marketing) Send the release announcement email to the bind-announce mailing list (and to bind-users if a major release - example).
(Marketing) Announce release on social media sites.
(Marketing) Update Wikipedia entry for BIND.
(Marketing) Update RT article informing customers of current versions and release schedule.
(Support) Add the new releases to the vulnerability matrix in the Knowledge Base.
(Support) Update tickets in case of waiting support customers.
(QA) Build, test, and publish any outstanding private packages in private repo. Example
(QA) Build public RPMs. Example commit which triggers Copr builds automatically
(SwEng) Build Debian/Ubuntu packages.
(SwEng) Update Docker files here and make sure push is synchronized to GitHub. Docker Hub should pick it up automatically. Example
(QA) Using merge_tag.py , merge published release tags back into the their relevant development/maintenance branches.
(QA) Ensure allow_failure: true is removed from the cross-version-config-tests job if it was set during the current release cycle.
(QA) Sanitize confidential issues which are assigned to the current release milestone and do not describe a security vulnerability, then make them public.
(QA) Sanitize confidential issues which are assigned to older release milestones and describe security vulnerabilities, then make them public if appropriate .2

(QA) Update QA tools used in GitLab CI (e.g. Black, PyLint, Sphinx) by modifying the relevant Dockerfile .
(QA) Manually create a pipeline and start all jobs in it to rebuild all images used in GitLab CI.
(QA) Update metadata.json with the upcoming release information.
(QA) Close all GitLab milestones for this release cycle (using close_milestones.py).

 If not, use the time remaining until the tagging deadline to ensure all outstanding issues are either resolved or moved to a different milestone. ↩ ↩ ↩2 3

 As a rule of thumb, security vulnerabilities which have reproducers merged to the public repository are considered okay for full disclosure. ↩

ISC Open Source Projects / BIND / Issues / #5534

Release Checklist for BIND 9.18.40, 9.18.40-S1, 9.20.14/9.20.15, 9.20.14-
S1/9.20.15-S1, 9.21.13

Edit

Open Issue created 3 weeks ago by Michał Kępień Show sidebar

27 of 57 checklist items completed · Edited 1 day ago by Michał Kępień

Release Checklist for BIND 9.18.40, 9.18.40-S1, 9.20.14/9.20.15, 9.20.14-S1/9.20.15-S1, 9.21.13

Release Schedule

Code Freeze: Wednesday, 1 October 2025

Tagging Deadline: Monday, 6 October 2025

EVN Release: Wednesday, 8 October 2025

Public Release: Wednesday, 22 October 2025

Documentation Review Links

Closed issues assigned to the milestone without a release note:

Merge requests merged into the milestone without a release note:

Merge requests merged into the milestone without a changelog entry:

Release Checklist

Before the Code Freeze

Before the Tagging Deadline

Before the EVN Deadline

Wednesday, 8 October 2025

On the Day of Public Release

Wednesday, 15 October 2025

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

(QA) Rebase -S editions on top of current open-source versions: git checkout bind-9.18-sub && git rebase --rebase-merges origin/bind-9.18
(QA) Inform Support and Marketing of impending release (and give estimated release dates).
(QA) Ensure there are no permanent test failures on any platform. Check public and private scheduled pipelines.
(QA) Check charts from shotgun:* jobs in the scheduled pipelines to verify there is no unexplained performance drop for any protocol. (Shotgun tests are currently
b0rked, so there is no way to check this.)
(QA) Check Perflab to ensure there has been no unexplained drop in performance for the versions being released.
(QA) Update GitLab settings for all maintained branches to disallow merging to them: public, private
(QA) Announce (on Mattermost) that the code freeze is in effect.
‣ Details

(QA) Ensure all merge requests marked for backporting have been indeed backported.
(QA) Check whether all issues and merge requests assigned to the release milestone are resolved .1

(QA) Branch-off open-source release branches (e.g. v9.20.X-release) from all maintained branches and push them to the private repository.
(QA) Merge any outstanding merge requests in the private repository to the open-source release branches. (e.g. security fixes)1

(QA) Rebase -S editions on top of the open-source release branches and branch-off -S release branches (e.g. v9.20.X-S1-release).
(QA) Merge any outstanding -S specific merge requests in the private repository to the -S release branches. (-S specific fixes)1

(QA) Inspect the current output of the cross-version-config-tests job to verify that no unexpected backward-incompatible change was introduced in the current
release cycle.
(QA) Reword any -S specific commits from previous release that would generate a release note or changelog entry.
(QA) Generate changelog and release notes from git log. (Run prep_doc_mr.py for instructions.)
(QA) Ensure release notes are correct, ask Support and Marketing to check them as well. Example
(QA) Update BIND 9 version in configure.ac (9.18+)
(QA) Tag the releases in the private repository (git tag -s -m "BIND 9.x.y" v9.x.y).
(QA) Assign the merged MRs to versioned milestones.
(QA) Update GitLab settings for all maintained branches to allow merging to them again: public, private
(QA) Announce (on Mattermost) that the code freeze is over.
‣ Details

(QA) Check that the formatting is correct for the HTML version of release notes.
(QA) Verify GitLab CI results for the tags created and sign off on the releases to be published.
(QA) Prepare and merge MRs updating the version string for each maintained branch (using version_bump.py).
(QA) Rebase the Subscription Edition branches (including recent release prep commits) on top of the open source branches with updated version strings.
(QA) Request signatures for the tarballs; ask signers on Mattermost.
(Signers) Ensure that the contents of tarballs and tags are identical (using release-tarball-comparison.sh).
(Signers) Sign tarballs and upload signatures.
(QA) Verify tarball signatures and check tarball checksums again: Run publish_bind.sh on repo.isc.org to pre-publish.
(QA) Prepare the patches/ subdirectory for each security release (if applicable).
(QA) Pre-publish EVN and/or Subscription Edition tarballs so that packages can be built.
(QA) Build and test EVN and/or Subscription Edition packages (in cloudsmith branch in private repo). Example
(Support) Prepare and send out EVN emails (as outlined in the CVE checklist; if applicable).
(QA) Publish EVN packages in Cloudsmith.

(QA) Ask for clearance from Incident Managers to proceed with the public release (if applicable).
(QA) Update Known Issues lists (9.18, 9.20).
(QA) Ensure all new tags are annotated and signed. git show --show-signature v9.19.12
(QA) Push tags to customer git repositories by triggering the customer-git:tag jobs in all the tag pipelines in the private repo.
(QA) Push tags for the published releases to the public repository.
(QA) Push the stable tag to be the same as the latest v9.20.x .
(QA) Place tarballs in public location on FTP site.
(QA) Inform Marketing of the release, providing FTP links for the published tarballs.
(QA) Use the Printing Press project to prepare a release announcement email.
(Marketing) Before proceeding with publication, check any CVE checklists associated with this release to ensure they are ready for publication.
(Marketing) Publish links to downloads on ISC website. Update hidden security releases table in the downloads data file in case of security release. Example
(Marketing) Update the BIND -S information ticket in the support portal with download links to the new versions. (If this is a security release, this will have already
been done as part of the EVN process.)
(Marketing) Open a ticket in the read-only BIND-Announce queue in the support portal to announce the release to support customers if a major release or significant
change to a stable version (or packages).
(Marketing) Send the release announcement email to the bind-announce mailing list (and to bind-users if a major release - example).
(Marketing) Announce release on social media sites.
(Marketing) Update Wikipedia entry for BIND.
(Marketing) Update RT article informing customers of current versions and release schedule.
(Support) Add the new releases to the vulnerability matrix in the Knowledge Base.
(Support) Update tickets in case of waiting support customers.
(QA) Build, test, and publish any outstanding private packages in private repo. Example
(QA) Build public RPMs. Example commit which triggers Copr builds automatically
(SwEng) Build Debian/Ubuntu packages.
(SwEng) Update Docker files here and make sure push is synchronized to GitHub. Docker Hub should pick it up automatically. Example
(QA) Using merge_tag.py , merge published release tags back into the their relevant development/maintenance branches.
(QA) Ensure allow_failure: true is removed from the cross-version-config-tests job if it was set during the current release cycle.
(QA) Sanitize confidential issues which are assigned to the current release milestone and do not describe a security vulnerability, then make them public.
(QA) Sanitize confidential issues which are assigned to older release milestones and describe security vulnerabilities, then make them public if appropriate .2

(QA) Update QA tools used in GitLab CI (e.g. Black, PyLint, Sphinx) by modifying the relevant Dockerfile .
(QA) Manually create a pipeline and start all jobs in it to rebuild all images used in GitLab CI.
(QA) Update metadata.json with the upcoming release information.
(QA) Close all GitLab milestones for this release cycle (using close_milestones.py).

 If not, use the time remaining until the tagging deadline to ensure all outstanding issues are either resolved or moved to a different milestone. ↩ ↩ ↩2 3

 As a rule of thumb, security vulnerabilities which have reproducers merged to the public repository are considered okay for full disclosure. ↩

ISC Open Source Projects / BIND / Issues / #5534

Release Checklist for BIND 9.18.40, 9.18.40-S1, 9.20.14/9.20.15, 9.20.14-
S1/9.20.15-S1, 9.21.13

Edit

Open Issue created 3 weeks ago by Michał Kępień Show sidebar

27 of 57 checklist items completed · Edited 1 day ago by Michał Kępień

Release Checklist for BIND 9.18.40, 9.18.40-S1, 9.20.14/9.20.15, 9.20.14-S1/9.20.15-S1, 9.21.13

Release Schedule

Code Freeze: Wednesday, 1 October 2025

Tagging Deadline: Monday, 6 October 2025

EVN Release: Wednesday, 8 October 2025

Public Release: Wednesday, 22 October 2025

Documentation Review Links

Closed issues assigned to the milestone without a release note:

Merge requests merged into the milestone without a release note:

Merge requests merged into the milestone without a changelog entry:

Release Checklist

Before the Code Freeze

Before the Tagging Deadline

Before the EVN Deadline

Wednesday, 8 October 2025

On the Day of Public Release

Wednesday, 15 October 2025

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

9.18.40
9.18.40-S1
9.20.14/9.20.15
9.20.14-S1/9.20.15-S1
9.21.13

(QA) Rebase -S editions on top of current open-source versions: git checkout bind-9.18-sub && git rebase --rebase-merges origin/bind-9.18
(QA) Inform Support and Marketing of impending release (and give estimated release dates).
(QA) Ensure there are no permanent test failures on any platform. Check public and private scheduled pipelines.
(QA) Check charts from shotgun:* jobs in the scheduled pipelines to verify there is no unexplained performance drop for any protocol. (Shotgun tests are currently
b0rked, so there is no way to check this.)
(QA) Check Perflab to ensure there has been no unexplained drop in performance for the versions being released.
(QA) Update GitLab settings for all maintained branches to disallow merging to them: public, private
(QA) Announce (on Mattermost) that the code freeze is in effect.
‣ Details

(QA) Ensure all merge requests marked for backporting have been indeed backported.
(QA) Check whether all issues and merge requests assigned to the release milestone are resolved .1

(QA) Branch-off open-source release branches (e.g. v9.20.X-release) from all maintained branches and push them to the private repository.
(QA) Merge any outstanding merge requests in the private repository to the open-source release branches. (e.g. security fixes)1

(QA) Rebase -S editions on top of the open-source release branches and branch-off -S release branches (e.g. v9.20.X-S1-release).
(QA) Merge any outstanding -S specific merge requests in the private repository to the -S release branches. (-S specific fixes)1

(QA) Inspect the current output of the cross-version-config-tests job to verify that no unexpected backward-incompatible change was introduced in the current
release cycle.
(QA) Reword any -S specific commits from previous release that would generate a release note or changelog entry.
(QA) Generate changelog and release notes from git log. (Run prep_doc_mr.py for instructions.)
(QA) Ensure release notes are correct, ask Support and Marketing to check them as well. Example
(QA) Update BIND 9 version in configure.ac (9.18+)
(QA) Tag the releases in the private repository (git tag -s -m "BIND 9.x.y" v9.x.y).
(QA) Assign the merged MRs to versioned milestones.
(QA) Update GitLab settings for all maintained branches to allow merging to them again: public, private
(QA) Announce (on Mattermost) that the code freeze is over.
‣ Details

(QA) Check that the formatting is correct for the HTML version of release notes.
(QA) Verify GitLab CI results for the tags created and sign off on the releases to be published.
(QA) Prepare and merge MRs updating the version string for each maintained branch (using version_bump.py).
(QA) Rebase the Subscription Edition branches (including recent release prep commits) on top of the open source branches with updated version strings.
(QA) Request signatures for the tarballs; ask signers on Mattermost.
(Signers) Ensure that the contents of tarballs and tags are identical (using release-tarball-comparison.sh).
(Signers) Sign tarballs and upload signatures.
(QA) Verify tarball signatures and check tarball checksums again: Run publish_bind.sh on repo.isc.org to pre-publish.
(QA) Prepare the patches/ subdirectory for each security release (if applicable).
(QA) Pre-publish EVN and/or Subscription Edition tarballs so that packages can be built.
(QA) Build and test EVN and/or Subscription Edition packages (in cloudsmith branch in private repo). Example
(Support) Prepare and send out EVN emails (as outlined in the CVE checklist; if applicable).
(QA) Publish EVN packages in Cloudsmith.

(QA) Ask for clearance from Incident Managers to proceed with the public release (if applicable).
(QA) Update Known Issues lists (9.18, 9.20).
(QA) Ensure all new tags are annotated and signed. git show --show-signature v9.19.12
(QA) Push tags to customer git repositories by triggering the customer-git:tag jobs in all the tag pipelines in the private repo.
(QA) Push tags for the published releases to the public repository.
(QA) Push the stable tag to be the same as the latest v9.20.x .
(QA) Place tarballs in public location on FTP site.
(QA) Inform Marketing of the release, providing FTP links for the published tarballs.
(QA) Use the Printing Press project to prepare a release announcement email.
(Marketing) Before proceeding with publication, check any CVE checklists associated with this release to ensure they are ready for publication.
(Marketing) Publish links to downloads on ISC website. Update hidden security releases table in the downloads data file in case of security release. Example
(Marketing) Update the BIND -S information ticket in the support portal with download links to the new versions. (If this is a security release, this will have already
been done as part of the EVN process.)
(Marketing) Open a ticket in the read-only BIND-Announce queue in the support portal to announce the release to support customers if a major release or significant
change to a stable version (or packages).
(Marketing) Send the release announcement email to the bind-announce mailing list (and to bind-users if a major release - example).
(Marketing) Announce release on social media sites.
(Marketing) Update Wikipedia entry for BIND.
(Marketing) Update RT article informing customers of current versions and release schedule.
(Support) Add the new releases to the vulnerability matrix in the Knowledge Base.
(Support) Update tickets in case of waiting support customers.
(QA) Build, test, and publish any outstanding private packages in private repo. Example
(QA) Build public RPMs. Example commit which triggers Copr builds automatically
(SwEng) Build Debian/Ubuntu packages.
(SwEng) Update Docker files here and make sure push is synchronized to GitHub. Docker Hub should pick it up automatically. Example
(QA) Using merge_tag.py , merge published release tags back into the their relevant development/maintenance branches.
(QA) Ensure allow_failure: true is removed from the cross-version-config-tests job if it was set during the current release cycle.
(QA) Sanitize confidential issues which are assigned to the current release milestone and do not describe a security vulnerability, then make them public.
(QA) Sanitize confidential issues which are assigned to older release milestones and describe security vulnerabilities, then make them public if appropriate .2

(QA) Update QA tools used in GitLab CI (e.g. Black, PyLint, Sphinx) by modifying the relevant Dockerfile .
(QA) Manually create a pipeline and start all jobs in it to rebuild all images used in GitLab CI.
(QA) Update metadata.json with the upcoming release information.
(QA) Close all GitLab milestones for this release cycle (using close_milestones.py).

 If not, use the time remaining until the tagging deadline to ensure all outstanding issues are either resolved or moved to a different milestone. ↩ ↩ ↩2 3

 As a rule of thumb, security vulnerabilities which have reproducers merged to the public repository are considered okay for full disclosure. ↩

ISC Open Source Projects / BIND / Issues / #5534

Release Checklist for BIND 9

https://gitlab.isc.org/isc-projects/bind9/-/issues/5534

Release Engineering

Does it have to be this way?

What is the "Release" anyway?

• Contains:

• Source Code

• Documentation

• Build System

• Artifacts:

• Source Code Tarball

• Binary Packages

• Release Notes

• Documentation

• Test Results

Reviewed and Tested Source
Code

Takes a lot of extra time if people don't work together!

Reviewed and Tested Source Code

• Freeze the release branches (for up to a week)

• Run a comprehensive test suites

• Check the results

Doesn't have to be time-consuming if people work together!

Reviewed and Tested Source Code

• Release Branches Quality Assurance

• Always stable

• Always reviewed

• Always tested

• Always documented

• Always ready for the release!

What is testing anyway?

Source Code Testing

• Unit Testing

• System Testing

• Cross-Version Testing

• Interoperability Testing

• Performance Testing

• User-Deployment Testing (the BEST ONE)

Not just tests

Quality Assurance Extras

• Style and Formatting

• Agree on a single source code style and formatting

• Use tools to help and enforce

• Source Code Style Tools (BIND 9 toolbox)

• C – clang-format, clang-tidy, coccinelle

• Python – black, pylint, vulture, mypy

• Shell – checkbashism, shfmt

Software Engineers

Documentation

• Commit Messages

• Comments in the Code

• Source itself

"We have seen that computer programming is an art,
because it applies accumulated knowledge to the
world, because it requires skill and ingenuity, and
especially because it produces objects of beauty. A
programmer who subconsciously views himself as
an artist will enjoy what he does and will do it better."

Knuth D., Computer Programming as an Art, CACM, December 1974

End Users

Documentation

• Reference Manual

• For long winter evenings

• Knowledge Base

• How do I do?

• Manual Pages

• How do I do?

• Release Notes

• Why is this not working?

Support Engineers

• Reference Manual

• Knowledge Base

• Written by Support Staff

• Release Notes

• Changelog

• More detailed than release notes, but less detailed than git

Before

Release Notes

1. Modify the source code

2. Modify the doc/notes/notes-<relver>.rst

3. Create merge request

4. Support Engineers spell-check our non-native speaker English

5. Rebase the branch

6. Resolve the rebase conflict

7. Go to 5. (ad infinitum until finally merged)

Now with git-changelog

Release Notes

1. Modify the source code

2. Create the merge request

3. Write solid merge request description with markup in the title

4. Support Engineers spell-check our non-native speaker English

5. Merge the merge request

Release Notes Examples
New User Feature

Removed Feature

Release Notes Examples

Bug Fix

Release Notes Examples

Our git-changelog syntax

• Action

• 'chg' is for refactor, small improvement,
cosmetic changes...

• 'fix' is for bug fixes

• 'new' is for new features, big
improvement

• 'rem' is for removed features

• 'sec' is for security fixes

• Audience:

• Included in release notes and changelog:

• 'usr' is for final users

• 'pkg' is for packagers

• Included in changelog:

• 'dev' is for developers

• Omitted from changelog:

• 'test' is for test-only changes

• 'doc' is for doc-only changes

• 'nil' is for ... just nobody should care about this

Security Release

• Security Releases are same but different

• Everything needs to be done in the private

• Means only internal testing is done...

• It helps to have small group of outside testers for early deployment (tyvm)

• Coordinated security releases are the worst

• Fixed schedule – between other vendors and security researchers

• If you make a mistake, everyone has to reschedule

Summary

Release Engineering

• Release Branches always in good shape

• Release Engineering Automated

• Ideally – just click here and magic happens

• Takes a lot of time to automate, but saves time

• Release Notes

• Use tools, not a manual process

• Fixing merge conflicts is annoying and error-prone

https://xkcd.com/1319/

Ondřej Surý, ISC; RIPE 91 22.10.2025

Thank you

