The World* Turned Upside Down†

* I.e., the DNS Root Server System

Jeff Osborn
President, ISC (F-Root, BIND9) & Chair, RSSAC
RIPE NCC, Krakow, May 2024

† With apologies to Lin-Manuel Miranda, Hamilton the Musical
Problem

- Most policy makers do not understand the Root Server System
- Some policy makers need to understand the Root Server System
 - Not only what it is (theoretically)
 - Also what it means (operationally)
The “usual” way to explain DNS

- Assumes **cold start scenario**: resolver knows nothing
- Focus on name space organisation logic, not operational mechanics
- **Overstates** short-term dependency (86,400,000 ms) on RSS
- **Understates** operational significance of resolvers
- **Understates** or ignores operational role of IANA/RZM

1st, we ask…

Then…

Finally…
What’s the harm (with the usual approach)?

- Creates the FALSE impression that RSS is a “gatekeeper” to the Internet; RSS as on-ramp (slip road) entry point to the Internet
- Politicians invest too much meaning in some engineering terms like “hierarchy”
- Fails to explain the close-to-zero observable impact if some components of the RSS were to fail briefly
 - The Root Server System as a whole has never failed in 40 years
 - RSS now comprised of 1700+ server instances; with anycast; operators act independently; no technological single point of failure; no institutional single point of failure
Solution… invert to show resolver reality and frequency

1st, we ask…

When we need to, we ask…

When we need to, we ask…

If we really know nothing, we ask…

More than 90% of all address queries are resolved here

Less than 0.02% of all address queries require a call to the RSS

“In the millisecond world of a resolver, queries to the Root Server System are rare”
- RSSAC (forthcoming publication)
How to present this message?

● **Deliverable 1**: detailed tutorial/explainer
 ○ Written for non-technical audience
 ○ Current RSSAC draft 15 pages, potentially finished at ICANN 80 (June 9-14, 2024)

● **Deliverable 2**: Slide shows based on Deliverable 1
 ○ Draft versions presented to friendly audiences at ICANN 79 (Feb 3-8, 2024) for feedback
 ○ Now, it looks like this…
The DNS Root Server System

Introduction for a non-technical audience

(PREVIEW EDITION)
Introducing DNS (the Domain Name System)

• DNS uses human names to find computer addresses
 • Humans know the domain names like: www.amazon.com
 • Computers know IP addresses like: 18.239.62.181
 • DNS looks up “www.amazon.com” and gets “18.239.62.181”
 • For the most part, numbers change, but names don’t

• Most connected devices need DNS to find things
 • Computers & servers
 • Smart phones

• Questions use a domain name; answers use IP addresses
Benefits of DNS

- Human-friendly identifiers
 - www.example.com is easier to use than 192.168.45.99

- Service portability
 - Resource owners control address mapping in their domain
 - DNS follows you to your new online home

- It’s a huge distributed network that’s easy to use
 - Flexible delegated management of hundreds of millions of directories
 - World’s largest distributed database
Devices get addresses from resolvers

• There are millions of resolvers around the world
• It’s like resolvers can read all the world’s phone books
 • The phone books are authoritative servers
 • The phone book listings are zone data
• What is the number for www.amazon.com?
• The number for www.amazon.com (for now) is 18.239.62.181
 • This happens in milliseconds
 • This happens about 500 trillion times every day
Resolvers get addresses from authoritative servers

• The resolver remembers addresses
 • This is called caching
 • This is where answers come from most of the time

• Once in a while, it needs a new number or to confirm an old one

• Depending how much it needs, it will ask:
 1. A domain name’s authoritative server
 2. A domain name’s authoritative server, and a TLD’s authoritative server
 3. A domain name’s authoritative server, and a TLD’s authoritative server, and a root server
START
Question Sent:
“What is the IP address for www.example.com”

Do I know the answer yet?
Question Sent: "What is the IP address for www.example.com"

Frequency (estimates): On average, how often do Resolvers consult at this level to answer a question?

Routine: > 90% of answers are returned needing cache memory only
Resolver

START

Question Sent: “What is the IP address for www.example.com”

END

Answer Returned to the requesting device.

Do I know the answer yet?

Yes

Cache Memory

Do I know the IP address of an authoritative server for example.com?

No

Frequency (estimates):

On average, how often do Resolvers consult at this level to answer a question?

Routine:

> 90% of answers are returned needing cache memory only
Send question: “What are the IP address(es) for www.example.com”

Do I know the answer yet?

Yes

Do I know the IP address of an authoritative server for example.com?

No

Resolver

[start]

Question Sent: “What is the IP address for www.example.com”

Answer Returned to the requesting device.

[end]

Cache Memory

Yes

Example.com authoritative server

example.com

zone data

Yes

Send question: “What are the IP address(es) for www.example.com”

No

Frequency (estimates):

On average, how often do Resolvers consult at this level to answer a question?

Routine:

> 90% of answers are returned needing cache memory only

Do I know the answer yet?

15
Do I know the answer yet?
Yes
No
Do I know the IP address of an authoritative server for: example.com?
Yes
No
Resolver

START
Question Sent: "What is the IP address for www.example.com?"

Do I know the answer yet?
Yes
No
Send question: "What are the IP address(es) for www.example.com?"

Cache Memory
Store what I learned

example.com authoritative server

example.com
zone data

Report the Answer: "203.0.113.57"

END
Answer Returned to the requesting device.

Frequency (estimates):
On average, how often do Resolvers consult at this level to answer a question?
Routine:
> 90% of answers are returned needing cache memory only
Occasional:
~ 5% of answers require a question to the domain name’s authoritative server
Do I know the IP address of an authoritative server for:
example.com?

Yes

Send question: “What are the IP address(es) for www.example.com”

No

Do I know the IP address of an authoritative server for:.COM?

Yes

Send question: “What are the IP addresses for the example.com * authoritative servers”

No

Do I know the answer yet?

Yes

Cache Memory

Store what I learned

No

END

Answer Returned to the requesting device.

START

Question Sent: “What is the IP address for www.example.com”

Resolver

* Using QName Minimization

Frequency (estimates):

Routine:
> 90% of answers are returned needing cache memory only

Occasional:
~ 5% of answers require a question to the domain name’s authoritative server

Uncommon:
~ 2% of answers require a question to the TLD authoritative server

Report the Answer: “203.0.113.57”

Report the IP addresses of the example.com authoritative servers

example.com

authoritative server

example.com zone data

.example.com

authoritative server

.COM (TLD)

(authoritative servers)

.COM zone data

.example.com

zone data

Common: ~ 95% of answers are returned needing cache memory only
Do I know the IP address of an authoritative server for: .COM?

Yes

Send question: "What are the IP address(es) for www.example.com" Report the Answer: "203.0.113.57"

No

Do I know the IP address of an authoritative server for: example.com?

Yes

Send question: "What are the IP addresses for the example.com authoritative servers" Report the IP addresses of the example.com authoritative servers

No

I always know how to contact the Root Server System, so…

Root Server System

Root Zone data

Yes

Do I know the answer yet?

No

Cache Memory

Store what I learned

No

Do I know the IP address of an authoritative server for: .COM?

Yes

Send question: "What are the IP addresses for the .COM " authoritative servers" Report the IP addresses of the .COM authoritative servers

No

I always know how to contact the Root Server System, so…

Frequency (estimates):

On average, how often do Resolvers consult at this level to answer a question?

Routine:
> 90% of answers are returned needing cache memory only

Occasional:
~ 5% of answers require a question to the domain name's authoritative server

Uncommon:
~ 2% of answers require a question to the TLD authoritative server

Rare:
~ 0.02% of answers require a question to the RSS

* Using QName Minimization

START
Question Sent: "What is the IP address for www.example.com"

END
Answer Returned to the requesting device.
Do I know the IP address of an authoritative server for: example.com?

- Yes
 - Send question: “What are the IP address(es) for www.example.com”

- No
 - Send question: “What are the IP addresses for the example.com * authoritative servers”

Do I know the IP address of an authoritative server for: .COM?

- Yes
 - Send question: “What are the IP addresses for .COM * authoritative servers”

- No
 - I always know how to contact the Root Server System, so…

Resolver

START

Question Sent: “What is the IP address for www.example.com”

END

Answer Returned to the requesting device.

Cache Memory

Store what I learned

Root Server System

Root Zone data

example.com

authoritative server

example.com

zone data

.COM (TLD)

authoritative server

* Using QName Minimization

Report the Answer: “203.0.113.57”

Report the IP addresses of the example.com authoritative servers

Report the IP addresses of the .COM authoritative servers

Frequency (estimates):

On average, how often do Resolvers consult at this level to answer a question?

Routine:

> 90% of answers are returned needing cache memory only

Occasional:

~ 5% of answers require a question to the domain name’s authoritative server

Uncommon:

~ 2% of answers require a question to the TLD authoritative server

Rare:

~ 0.02% of answers require a question to the RSS

I always know how to contact the Root Server System, so…
The Root Zone holds addresses for less than 0.00005% of the world’s addressable resources

<table>
<thead>
<tr>
<th>DNS Layer</th>
<th>Number of unique zones</th>
<th>Typical number of resource addresses</th>
<th>Maintained by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain name zone data</td>
<td>350,000,000</td>
<td>Varies</td>
<td>The domain name registrant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each [www.], [mail.], etc.</td>
<td></td>
</tr>
<tr>
<td>TLD zones</td>
<td>1,700</td>
<td>1,000 - 10,000,000 domains</td>
<td>The TLD registry</td>
</tr>
<tr>
<td>Root Zone</td>
<td>1 (one)</td>
<td>1,700 TLDs</td>
<td>IANA/RZM</td>
</tr>
</tbody>
</table>
In review

- A root server holds a copy of “Root Zone” data.
 The Root Zone holds addresses for TLD’s like:
 - .com
 - .nl
 - .jobs (and on and on)

- A TLD’s authoritative server knows the address for the next step.
 - All names that end in .com, like amazon.com or tiktok.com
 - All names that end in .nl, like google.nl or amsterdam.nl
 - All names that end in .jobs, like tech.jobs or highpay.jobs

- A domain name’s authoritative server knows
 - The answer to the question about www.amazon.com or mail.amazon.com or info.amazon.com

- The resolver finds and returns the answer
In the millisecond world of a resolver, queries to the Root Server System are rare.
Root Server System Operation

- Massively redundant 1700+ globally distributed server instances
 - Each server instance holds 100% of the Root Zone content
 - Diverse hardware platforms
 - Diverse operating systems
 - Diverse DNS applications
 - Diverse data routing

- Result: No single point of technological failure
Root Server System Operation

- Co-operated by 12 autonomous Root Server Operators (RSO)
 - Each RSO is independent of the others
 - The RSOs collaborate continuously with one another
 - Force majeure event suffered by one (court injunction, etc) has no operational impact on the others

- Result: No single point of institutional failure
Root Server Operators do not choose the content of Root Zone data

- Where does zone data come from?
 - Registrants maintain the zone data for their own domain
 - Registrants provide their authoritative server addresses to TLD registries, via registrars
 - TLD registries provide their authoritative server addresses to IANA for inclusion in the root zone
 - IANA authenticates and sends root zone data changes to the Root Zone Maintainer (RZM)
 - The RZM generates encrypted signatures and makes the root zone data available in the RSS by transmitting it to the RSOs

- The RSOs serve up what IANA sends
40 years of stability, security, and resilience

- The Root Server System has operated since the 1980’s
- It has never suffered a service outage.
 - DDoS attackers have tried; they failed, by design
Summary

- The root server system is an important, if infrequent, component of address resolution
 - Most DNS queries are answered from cache memory
 - Most remaining DNS queries go straight to domain name authoritative servers
- Root server operators do not decide the content of the Root Zone
- The root server system
 - Is massively redundant
 - Is technologically diverse
 - Is institutionally resilient
- The root server system works