Getting started with EDNS Client Subnet

Cathy Almond

26 October 2023

https://www.isc.org
What this webinar will cover:

• What (and why) ECS?
• Simple first configuration
• Prefixes and scopes
• ECS forwarding
• ECS cache
• “Gotchas” and mitigations
What’s the problem?

- Some authoritative servers provide location-specific answers
- Resolver location may not represent client location!

Photo by NASA on Unsplash
What if …

• A resolver making a query could ‘tell’ the authoritative server where the client it is serving, is located?
What if …

- Authoritative servers returned different answers to resolvers who told them where their clients are located?
EDNS Client Subnet (ECS)

• ECS-enabled Resolver can add client subnet to queries it sends to authoritative zone servers
• ECS-supporting authoritative servers reply, adding subnet and mask (scope) to their query responses
• Resolver caches answers with ECS scopes

Let’s try it!

$ dig @216.239.32.10 +qr +norec google.com +subnet=82.71.29.0/24

; <<>> DiG 9.16.42-S1 <<>> @216.239.32.10 +qr +norec google.com
+subnet=82.71.29.0/24
; (1 server found)
;; global options: +cmd
;; Sending:
;; -->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56625
;; flags: ad; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; CLIENT-SUBNET: 82.71.29.0/24/0
; COOKIE: 8418eadccb28cf24
;; QUESTION SECTION:
;google.com. IN A

;; QUERY SIZE: 62
Oooh!

;; Got answer:
;; --->HEADER<-- opcode: QUERY, status: NOERROR, id: 56625
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
; CLIENT-SUBNET: 82.71.29.0/24/18
;; QUESTION SECTION:
;google.com. IN A

;; ANSWER SECTION:
google.com. 300 IN A 142.250.180.14

;; Query time: 63 msec
;; SERVER: 216.239.32.10#53(216.239.32.10)
;; MSG SIZE rcvd: 66
And also with IPv6

$ dig @216.239.32.10 +qr +norec google.com +subnet=2001:500:6b::/56

;; <<< DiG 9.16.42-S1 <<< @216.239.32.10 +qr +norec google.com +subnet=2001:500:6b::/56
;; (1 server found)
;; global options: +cmd
;; Sending:
;; -->HEADER<- opcode: QUERY, status: NOERROR, id: 5053
;; flags: ad; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; CLIENT-SUBNET: 2001:500:6b::/56/0
; COOKIE: 81c7f1f55530bb43
;; QUESTION SECTION:
google.com. IN A

;; QUERY SIZE: 66
And also with IPv6

;; Got answer:
;; -->>HEADER<<-- opcode: QUERY, status: NOERROR, id: 5053
;; flags: qr aa; QUERY: 1, ANSWER: 6, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
; CLIENT-SUBNET: 2001:500:6b::/56/48
;; QUESTION SECTION:
;google.com. IN A

;; ANSWER SECTION:
google.com. 300 IN A 74.125.138.139
google.com. 300 IN A 74.125.138.102
google.com. 300 IN A 74.125.138.138
google.com. 300 IN A 74.125.138.113
google.com. 300 IN A 74.125.138.101
google.com. 300 IN A 74.125.138.100

;; Query time: 49 msec
;; SERVER: 216.239.32.10#53(216.239.32.10)
;; WHEN: Thu Oct 26 11:33:59 BST 2023
;; MSG SIZE rcvd: 150
But…

• ECS has not been standardized by the IETF. There is concern about the privacy implication of providing additional information about the client to unrelated Internet authorities.
• ECS should be deployed only if the benefit outweighs the cost.
• Are you doing DNSSEC validation and will it still work?
• Once you enable ECS in your BIND 9 resolver, the resolver will cache the different responses for each subnet, significantly inflating cache size.
• Not all authoritative servers properly handle queries containing ECS options.
ECS in BIND Subscriber (-S) Edition

• BIND9 -S edition includes configurable resolver ECS options
• BIND does not include an authoritative ECS solution

Getting started...

BIND9 -S edition “out of the box” does not automatically do any ECS - it behaves in exactly the same way as Open Source BIND.

Photo by krakenimages on Unsplash
Getting started …

- The first (and possibly only) option you need is: **ecs-zones**
 - Use this configuration option to list the domains to whose servers you wish to send ECS options
 - You can also use **ecs-zones** to exclude some domains and domain names
ecs-zones

• Enabling resolver ECS for queries to all authoritative servers:

 `ecs-zones {.;};`

• Enabling resolver ECS for a specific list of domains only:

 `ecs-zones {example.com; example.net; };`
ecs-zones

• A more complex ecs-zones example:

 ecs-zones {example.com;
 example.net;
 !excluded.example.com;
 !excluded.example.net; };
But oops?...

- The domain names specified in `ecs-zones` are matched against the domain whose servers are being queried by your resolver, not against the client query name.
- `ecs-zones` is *effectively* specifying servers (by listing the domain for which they are authoritative); *it is not a filter being applied to client queries themselves.*

Photo by Nathan Dumlao on Unsplash
Example

- Client query is "fluffy.cats.example.com"
- named.conf has:
 ecs-zones {cats.example.com;};
- Resolver sends query to (already learned) servers for example.com
- These servers reply authoritatively with an answer for "fluffy.cats.example.com"
- Resolver will not be using ECS for this query because it has queried (and received a reply) from the servers it knows as authoritative for example.com, and never queries any servers for cats.example.com.
ecs-zones

• Listed zones match the authority of the servers being queried:
 ecs-zones {example.com;
 example.net;
 !excluded.example.com.;
 !excluded.example.net; }

• However, listed exclusions are handled differently - these instead match the client query name

• In both instances we’re doing closest match, thus queries for this.is.my.example.com will use ECS and those for really.excluded.example.net will not
Example

- Client query is "spotty.cats.example.com"
- named.conf has:

  ```
  ecs-zones {example.com;
    !spotty.cats.example.com};
  ```

- Resolver sends query to (already learned) servers for example.com (we fixed named.conf option ecs-zones from the earlier example/test so that we would now use ECS)
- Resolver will not be using ECS for this query because although it has matched the destination servers for example.com, we’ve explicitly excluded name spotty.cats.example.com
Becoming more sophisticated …

• There are other ECS options available:
 • Use `ecs-forward` to permit clients to send their own ECS options, which may then be forwarded by the resolver
 • Use `ignore-ecs-opt` to discard unsolicited ECS in server query responses
 • Use `ecs-types` to restrict the RR types that are eligible for ECS
ecs-forward

Client1

Client2 (forwarder)

DNS Resolver

Client3

Client4

Authoritative DNS Server
ecs-forward

Client4

Client3

Client2 (forwarder)

Client1

DNS Resolver

Authoritative DNS Server
ecs-forward

• Option `ecs-forward` specifies an ACL of client addresses from which ECS-tagged queries may be forwarded.

• If the client sending the query is allowed, and the query name would be allowed per `ecs-zones`, then the resolver ECS processing uses the received client option *(with some provisos - see `ecs-bits` later in this presentation)*.

• A client query received with global scope ECS option (prefix 0) effectively disables ECS for this query.

• ⚠️ Client queries containing *non-global* ECS options where the client is not included in `ecs-forward` will be REFUSED.
ecs-forward

- Enabling forwarding of ECS options for specific clients and subnets:

```plaintext
escs-forward {
  192.0.2/24;
  2001:db8::/32;
};
```
ignore-ecs-opt

• Open Source BIND is unaware of ECS and will ignore unsolicited ECS options in query responses from authoritative servers.
• BIND9 -S edition with no ECS configuration at all, will do the same
• BIND9 -S edition with any ECS configuration will drop/reject any query responses from authoritative servers that contain unexpected ECS options
• Use ignore-ecs-opt yes; to ignore ‘surprise’ ECS options from broken DNS server implementations
ecs-types

• By default, when using ECS for a query, the resolver does so for all RR types except DNS infrastructure (NS and SOA) and some DNSSEC types
• You can instead (if you wish) use option `ecs-types` to list which RR types being queried will use ECS
• CNAME is special - even if not listed in `ecs-types`, if the original query type is listed, an ECS-scoped CNAME query response RR will still be used and cached
Privacy concerns

• There are several ECS options available:
 • Restrict the granularity of advertised ECS subnet information using global option `ecs-bits`
 • Use `bits-v4` and `bits-v6` within `ecs-zones` for per-zone ECS granularity
 • Use `ecs-privacy` to signal upstream that ECS is to be disabled
 • Server option `ecs no;` will prevent ECS options being sent to specific servers or address ranges
ecs-bits

Client sends query from own IP address

Resolver applies subnet mask per configured ecs-bits

Sent ECS option gives the client subnet only, not full client IP address

Authoritative DNS Server
ecs-bits

• Provides the default prefix length (subnet mask) to use in ECS queries for IPv4 and IPv6 addresses
• Default values are 24 (for IPv4) and 56 (for IPv6)
• These are also the maximum allowed (unless overridden when building BIND, using compiler flags
 -DECS_MAX_V4_SCOPE and/or
 -DECS_MAX_V6_SCOPE
• Changing the maximum does not also change the default!
• Current packaged versions of BIND-S edition are built with
 -DECS_MAX_V6_SCOPE=64
ecs-bits

• Configuring the defaults explicitly:
 \texttt{ecs-bits 24 56};

• More client privacy:
 \texttt{ecs-bits 16 48};

• No client privacy at all (perhaps for an internal-only service?):
 \texttt{ecs-bits 32 128};
ecs-zones options bits-v4 and bits-v6

• It is possible to override the default source (requested) prefixes on a per-zone basis from the **ecs-zones** option

• As names in **ecs-zones** become more specific, prefix-lengths cannot increase. If **example.com** is specified with **bits-v4 20**, then no prefix length higher than 20 can be used for IPv4 queries for any subdomain of **example.com**
Example

escs-zones {
 example.com bits-v4 20;
 ! excluded.example.org;
 example.org bits-v4 22 bits-v6 48;
 example.net;
};
ecs-bits vs. ecs-forward

• If you are using `ecs-forward` and a client query has a requested scope with a larger prefix than allowed for this zone (as controlled by `ecs-bits` and `bits-v4/bits-v6`), then the resolver will adjust the client options to truncate the subnet before forwarding.

• If you are using `ecs-forward` and a client query has a requested scope with a smaller prefix than allowed, the resolver uses the client options.

• Any client can disable ECS using a zero length prefix (even if not listed in `ecs-forward`).
ecs-privacy

• If set to yes, then when a query is allowed for ECS processing and no client ECS option is being forwarded, the resolver will always include an ECS option with a source prefix-length of zero in all of its upstream queries.
• This is a request to upstream intermediate resolvers to disable ECS when processing queries sent by this resolver.
• The default is no.
• You would potentially use this on a resolver that handles only forwarded client queries, so that it doesn’t ever add its own ECS options if the client forwarders didn’t request them.
Server option “ecs no;”

- For when you need to override the sending of ecs options on a per-server basis...
ECS cache

• Ordinary cache
• ECS cache - extra RRsets maintained in cache alongside ordinary records, with the scope that the authoritative server provided
• Global scope - RRsets held in ECS cache with prefix 0 - these will be used to match all client queries where ECS is allowed (per `ecs-zones`)
• *Caches for resolvers using ECS are going to be larger!*
ECS cache

• Authoritative servers provide answers at the requested scope, or with a smaller prefix
• Authoritative servers that could provide answers with a larger prefix, may indicate this by returning a larger prefix value in their response
• Negative authoritative server responses are all cached with global scope
• Delegation responses are also cached with global scope
ECS cache

• Use `rndc dumpdb -ecscache` to dump cache content, including ECS-scoped RRsets
• Use `dig` option `+subnet=` to test resolver behaviour
• Use `dig` options `@<server IP> +norec +subnet=` to test authoritative server responses
• Use `dig` options `@<server IP> +norec +subnet=` to find out what an ECS-enabled resolver has in cache
“Gotchas”

- Cache bloat
- DNSSEC-validation
- Unsolicited ECS options on server responses
- Unexpected client-supplied ECS options
- Negative server responses are globally cached
- Transient CNAMEs used by CDNs
Also we have heard that ...

- Some authoritative servers “break” when receiving queries with ECS options
- Other authoritative servers always respond with the same answer RR but scoped to match the ECS subnet requested - unnecessary cache bloat!
- Surprise unsolicited ECS options on server responses
- GeoIP databases are not always correct
- Authoritative zone providers may use different GeoIP databases for sender IP (if no ECS) and subnet specified in ECS options
Summary of topics covered:

• What (and why) ECS, and effective use of:
 • ecs-zones (and optional ecs-types)
 • ecs-bits (also per-zone bits-v4, bits-v6)
 • ecs-forward (and ecs-privacy)
 • server options ecs and ignore-ecs-opt
• ECS cache
• Problems and mitigations
Any Questions?
(No prizes) quiz - identify the flags:
Thank you!

- ECS KB Article: https://kb.isc.org/docs/edns-client-subnet-ecs-for-resolver-operators-getting-started
- Main website: https://www.isc.org
- Software downloads: https://www.isc.org/download or https://downloads.isc.org
- Presentations: https://www.isc.org/presentations
- Main GitLab: https://gitlab.isc.org
Flags:

- Denmark
- Czechia
- Namibia
- Jamaica
- Australia