
Optimizing Kea DHCP
Performance

Tomek Mrugalski, Director of DHCP Engineering

1
Photo by Karl Anderson on Unsplash

https://unsplash.com/@karlkiwi90?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/kea-new-zealand?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Optimizing DHCP Performance
1. Obvious stuff
2. Multi-threading
3. Lease storage
4. Host reservation
5. Client classification
6. Hardware platform
7. Minimize latency between components
8. HA choices
9. Reduce iterations to allocate lease

10. Hooks and latency
11. Don’t do these things
12. Fine tuning

2

Planning for capacity and performance
Server load factors:

● Clients without a lease (new client or expired)
● Clients renewing an existing lease
● API requests
● Bad clients (chatty)
● Lease expiration times
● Lease renewal times
● HA

3

Source: Cisco

Obvious stuff
● Upgrade, it really makes sense

○ still on 1.4? ugh
○ 1.6 single-threaded
○ 1.8 added MT (for packet processing, doesn’t cover HA)
○ 2.0 added HA+MT
○ 2.1.x added cache threshold, subnet selection speed-up,

early global HR lookup, ...

● Don’t run stuff you don’t need
○ HR
○ HA
○ shared networks
○ logging
○ extra hooks

4

Test setup

5

5

perfdhcp

1 gig ethernet

Kea 2.0.2, memfile, MySQL, PostgreSQL

Dell R340Kea 2.0.2, memfile, MySQL, PostgreSQL

system under test

second system for HA testing

Kea is running on 2 Dell R340 servers:
• CPU Intel Xeon E-2146G 3.5GHz

6 cores/12 threads
• 64GB RAM
• 3 x SSDs 446GB each in HW RAID-0
• Intel(R) 10GbE 2P X710 Adapter (2 ports)
• OS - Ubuntu 18.04.4 LTS

Performance test details:https://kb.isc.org/docs/kea-20-performance-tests
MySQL DB tweak: https://kea.readthedocs.io/en/latest/arm/admin.html#improved-performance-with-mysql

Dell R340

https://kb.isc.org/docs/kea-20-performance-tests
https://kea.readthedocs.io/en/latest/arm/admin.html#improved-performance-with-mysql

MT :: # of threads

{
 "Dhcp4": {
 "multi-threading": {
 "enable-multi-threading": true,
 "packet-queue-size": 16,
 "thread-pool-size": 8
 },
 ...
}

6

● More is not always better
● Heavily dependent on the backend and

HW

MT :: queue size

{
 "Dhcp4": {
 "multi-threading": {
 "enable-multi-threading": true,
 "packet-queue-size": 80,
 "thread-pool-size": 8
 },
 ...
}

7

● Defines queue size globally
● Longer queue:

○ often does not give you more performance
○ usually increases response time

MT :: Comparative results

! ! !!

Interactive version: https://reports.kea.isc.org/performance/stable/2.0.2/report.html 8

!

https://reports.kea.isc.org/performance/stable/2.0.2/report.html

Lease Storage
memfile > mysql > pgsql

Interactive version: https://reports.kea.isc.org/performance/stable/2.0.2/report.html 9

https://reports.kea.isc.org/performance/stable/2.0.2/report.html

Host Reservations :: In-pool, out-of-pool
• disabled - fastest (pure dynamic)

SUBNET, e.g. 192.168.1.0/24

POOL, e.g. 192.168.1.3-192.168.1.100

SUBNET, e.g. 192.168.1.0/24

POOL, e.g. 192.168.1.3-192.168.1.100

• all - safer (you can put HR anywhere, but it’s slower)

Recommended reading: https://kea.readthedocs.io/en/kea-2.0.2-doc/arm/dhcp4-srv.html#fine-tuning-dhcpv4-host-reservation

• out of pool - faster (no HR lookup for dynamic)
SUBNET, e.g. 192.168.1.0/24

POOL, e.g. 192.168.1.3-192.168.1.100

RESERVED ADDRESS

DYNAMIC POOL

10

ADDRESS IN ADDRESS SPACE

https://kea.readthedocs.io/en/kea-2.0.2-doc/arm/dhcp4-srv.html#fine-tuning-dhcpv4-host-reservation

Host Reservations :: Subnet, global, early
Processing order:

• early global HR lookup (disabled by default), introduced in 2.1.4
• subnet selection
• global HR lookup (disabled by default)
• subnet HR lookup

Subnet HR: normal networks have reservations specific to subnet

device X connected in this subnet should get address Y and option Z

Global HR: roaming users

this device, regardless where it’s connected, should get option Z (and maybe address W)

Don’t use address reservation in global HR, unless you know exactly what you’re doing.

11

Host Reservations :: Identifiers
• The DHCPv4 default (safe, but slow)

• Pick only reservation type you’re actually using. In most cases, it will be:

• Recommendation: use only one reservation identifier
• supported options: hw-address, duid, circuit-id, duid, client-id, flex-id

"Dhcp4": {
 "host-reservation-identifiers": ["hw-address", "duid", "circuit-id", "client-id"],
 ...
}

"Dhcp4": {
 "host-reservation-identifiers": ["hw-address"],
 ...
}

12Recommended reading: https://kea.readthedocs.io/en/kea-2.0.2-doc/arm/dhcp4-srv.html#fine-tuning-dhcpv4-host-reservation

https://kea.readthedocs.io/en/kea-2.0.2-doc/arm/dhcp4-srv.html#fine-tuning-dhcpv4-host-reservation

Classification (expressions in general)

Cool way to classify when used in moderation.

Each packet is evaluated against each class. For each class, each token needs to be evaluated.

Each token (a primitive part of the expression) marked with different colors.

Good example Bad example

Affects (if used): classification, custom logging in forensic logging, flex-id, ...

13

 {
 "name": "DROP",
 "test": "pkt4.msgtype == 5"
 },

 {
 "name": "DROP",
 "test": "pkt4.mac == 0x0102030405 or pkt4.mac == 001122334455 or ..."
 },

Classification impact

14

"Dhcp6": {
 "client-classes": [
 {
 "name": "CLASS0"
 },
 {
 "name": "CLASS1"
 },
 {
 "name": "CLASS2"
 },
 {
 "name": "CLASS3"
 },
 // 100 classes total

"Dhcp6": {
 "client-classes": [
 {
 "name": "CLASS0",
 "test": "'a'=='a'"
 },
 {
 "name": "CLASS1",
 "test": "'a'=='a'"
 },
 {
 "name": "CLASS2",
 "test": "'a'=='a'"
 },
 {
 "name": "CLASS3",
 "test": "'a'=='a'"
 },
 // 100 classes total

● Scenario 1: memfile v6, no classes

● Scenario 2: memfile v6, 100 empty classes

●
● Scenario 3: memfile v6, 100 classes with simple expression

Scenario 1 35038 leases/s

Scenario 2 28546 leases/s

Scenario 3 12732 leases/s

Considerations when choosing hardware

Application Limitation Optimize

DHCPv4, DHCPv6
servers CPU Fast clock speed,

of threads

Lease backend lease writes to disk,
round trip time

disk access speed,
network latency

Host backend reads, round trip time disk read speed, memory,
network latency

Configuration backend (same as lease),
pooling time ?

15

Network latency

DHCP

DB

● Planning your DB
○ Fastest: don’t use DB at all
○ If you can’t, keep your DB local
○ If you can’t, keep your DB close
○ If you can’t, ...

• Clustering solutions are hairy beasts.
ISC has limited experience. For MySQL, Galera and Percona seems to work well.
More work planned in 2.3.x series (kicking off in July’22)

• Can point different backends to different DBs.
• Lease backend most sensitive, then hosts backend, then config backend

Recommended reading: https://kb.isc.org/docs/getting-started-with-galera-or-percona-for-kea 16

Reduce iterations

Better Worse

Large subnets
(low utilization)

Small subnets
(higher utilization)

Fewer subnets, fewer pools Many subnets

No shared networks Shared networks (just
another subnet to check)

just use chaddr look up by client ID
look up again by chaddr

17

High Availability and
Multi-threading

• Enable MT and direct connection between HA partners.
• Hot-standby has a more lightweight setup than load balancing - it avoids

splitting the pools between the servers using client classification. As a result,
the servers can find suitable pools faster.

• Specify a reasonable parked-packet-limit to avoid congestion when the
HA-enabled server becomes swamped with a stream of packets exceeding its
capacity to respond.

• Reduce the network latency between the HA partners (network configuration,
geo-location, etc.).

18

High Availability and
Multi-threading

• Use as few backup servers as possible - avoid lease updates overhead.
• Avoid low heartbeat delay values to reduce the heartbeat processing

overhead.
• Disable lease updates and leases synchronization when HA-enabled servers

use a common database for leases.

19

ctrl-agent1 ctrl-agent2

JS
O

N
/U

nix

HTTP

JS
O

N
/U

nix

srv1

HTTP

Multi-threading (Kea 1.8)

20

srv2

192.0.2.2:8000192.0.2.1:8000
"Control-agent":
{

"http-host": "192.0.2.1",
"http-port": 8000,
...

}

"Dhcp4”: {
 ...
"this-server-name": "srv1",
"peers": [{
 "name": "srv1",
 "url": "http://192.0.2.1:8000/",
 "role": "primary",
 "auto-failover": true
},
{
 "name": "srv2",
 "url": "http://192.0.2.2:8000/",
 "role": "secondary",
 "auto-failover": true
},

}

"Control-agent":
{

"http-host": "192.0.2.2",
"http-port": 8000,
...

}

"Dhcp4”: {
 ...
"this-server-name": "srv1",
"peers": [{
 "name": "srv1",
 "url": "http://192.0.2.1:8000/",
 "role": "primary",
 "auto-failover": true
},
{
 "name": "srv2",
 "url": "http://192.0.2.2:8000/",
 "role": "secondary",
 "auto-failover": true
},

}

Multi-threadedSequential

Multi-threadedSequential

High Availability with Multi-threading (Kea 2.0)

21

HTTP

HTTP

HTTPdhcp1 dhcp2

ctrl-agent1

JS
O

N
/U

nix

192.0.2.1:8000
ctrl-agent2

JS
O

N
/U

nix

192.0.2.2:8000

"Control-agent":
{

"http-host": "192.0.2.1",
"http-port": 8000,
...

}

"high-availability": [{

 "multi-threading": {
 "enable-multi-threading": true,
 "http-dedicated-listener": true,
 "http-listener-threads": 4,
 "http-client-threads": 4
 },

 "this-server-name": "srv1",
 "peers": [{
 "name": "srv1",
 "url": "http://192.0.2.1:8001/",
 "role": "primary",
 "auto-failover": true
 },
 {
 "name": "srv2",
 "url": "http://192.0.2.2:8001/",
 "role": "secondary",
 "auto-failover": true
 },
}

192.0.2.1:8001 192.0.2.2:8001

"Control-agent":
{

"http-host": "192.0.2.2",
"http-port": 8000,
...

}

"high-availability": [{

 "multi-threading": {
 "enable-multi-threading": true,
 "http-dedicated-listener": true,
 "http-listener-threads": 4,
 "http-client-threads": 4
 },

 "this-server-name": "srv2",
 "peers": [{
 "name": "srv1",
 "url": "http://192.0.2.1:8001/",
 "role": "primary",
 "auto-failover": true
 },
 {
 "name": "srv2",
 "url": "http://192.0.2.2:8001/",
 "role": "secondary",
 "auto-failover": true
 },
}

Hooks add latency

● RADIUS hook - still not MT capable
● run script hook
● any hook with a DB lookup
● be cautious with Forensic logging

○ flexible, but at a cost (custom, DB logging)

22

"subnet6": [

 {

 "subnet": "2001:db8::/64",

 "pools": [{ "pool": "2001:db8::/64" }],

 "renew-timer": :1800,

 "valid-lifetime": 3600,

 "cache-threshold": .25,

 "cache-max-age": 900,

 ...

 }

],

Chatty Clients (2.0)

● Problem: Buggy clients renewing early

● Each renewal:

○ Host reservation lookup

○ Lease lookup

○ Logging*

○ HA: partner update*

○ DNS Update*

● Solution: cache replies

● IPv4 and IPv6

Mitigation, not 100% solution

23

The danger of high pool utilization

24

Pool utilization reached 96% here

ISC Performance Reports
https://reports.kea.isc.org

• Interactive (zoom in, legend, compare, ...)
• Patience is a virtue (lots of data, takes a while to load)

25

Going over the top
• 36k leases/s x 4 packets x ~300 bytes = 430.2MB/s

that’s ~540 Mbps

• traffic control starts to play a role

• socket buffers

• queue disciplines

• NIC drivers tweaking

• ...

26

Trust, but verify

• Run your own
experiments, it’s easy!

• Simulate 1k clients at 500 pkts/s: perfdhcp -R 1000 -r 500 -i eth0 192.0.2.1
• Run for certain time: -p <seconds>
• Read MAC addresses from file: -M <mac-list-file>
• Add custom option: -o code,hexstring (wanna simulate cable modems? voip? ...)
• Able to simulate multiple relays: -J <remote-address-list-file>
• Can do traffic engineering to some degree: -f renew-rate, -F release-rate
• Can do various scenarios:

• How long it takes to configure X clients?
• How many leases/s can my system assign/renew?
• Avalanche mode (impatient clients start renewing)

$./perfdhcp --help
perfdhcp [-1] [-4 | -6] [-A encapsulation-level] [-b base] [-B] [-c]
 [-C separator] [-d drop-time] [-D max-drop] [-e lease-type]
 [-E time-offset] [-f renew-rate] [-F release-rate] [-g thread-mode]
 [-h] [-i] [-I ip-offset] [-J remote-address-list-file]
 [-l local-address|interface] [-L local-port] [-M mac-list-file]
 [-n num-request] [-N remote-port] [-O random-offset]
 [-o code,hexstring] [-p test-period] [-P preload] [-r rate]
 [-R num-clients] [-s seed] [-S srvid-offset] [--scenario name]
 [-t report] [-T template-file] [-u] [-v] [-W exit-wait-time]
 [-w script_name] [-x diagnostic-selector] [-X xid-offset] [server]

27

Stork Grafana charts
Many metrics on DORAs, with time-based buckets

28

I’d Really Rather You Didn’ts

• Run at pool utilization close to 100%

• Log at debug level in production

• Use client classification expressions to enumerate a long list of specific clients

• Employ lengthy regular expressions

• Poll the rest api constantly (e.g. collecting statistics from thousands of subnets)

• Load hooks you don’t really need

• Run old versions - 2.0 got its number for a reason

• Run HA without enabling HA+MT processing

29

References

● Performance test results: https://reports.kea.isc.org
● Kea documentation: https://kea.readthedocs.io/en/latest/
● Kea performance webinar (Apr 2020):

○ Slides: https://www.isc.org/docs/KeaPerformance042220.pdf
○ Recording: https://youtu.be/ipUjIqg5pMY

● Description of the performance test design (from an earlier run of
this test): https://kb.isc.org/docs/kea-20-performance-tests

● Knowledgebase article on Kea Performance Optimization:
https://kb.isc.org/docs/kea-performance-optimization

● Kea-users mailing list: https://lists.isc.org/mailman/listinfo/kea-users

30

https://reports.kea.isc.org
https://kea.readthedocs.io/en/latest/
https://www.isc.org/docs/KeaPerformance042220.pdf
https://youtu.be/ipUjIqg5pMY
https://kb.isc.org/docs/kea-20-performance-tests
https://kb.isc.org/docs/kea-performance-optimization
https://lists.isc.org/mailman/listinfo/kea-users

Questions?

31

